Generic Transformations of Predicate Encodings: Constructions and Applications

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10401)

Abstract

Predicate encodings (Wee, TCC 2014; Chen, Gay, Wee, EUROCRYPT 2015), are symmetric primitives that can be used for building predicate encryption schemes. We give an algebraic characterization of the notion of privacy from predicate encodings, and explore several of its consequences. Specifically, we propose more efficient predicate encodings for boolean formulae and arithmetic span programs, and generic optimizations of predicate encodings. We define new constructions to build boolean combination of predicate encodings. We formalize the relationship between predicate encodings and pair encodings (Attrapadung, EUROCRYPT 2014), another primitive that can be transformed generically into predicate encryption schemes, and compare our constructions for boolean combinations of pair encodings with existing similar constructions from pair encodings. Finally, we demonstrate that our results carry to tag-based encodings (Kim, Susilo, Guo, and Au, SCN 2016).

Notes

Acknowledgements

The work presented here was supported by projects S2013/ICE-2731 N-GREENS Software-CM, ONR Grants N000141210914 and N000141512750.

Supplementary material

References

  1. 1.
    Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime order groups. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 259–288. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49099-0_10 CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate encryption schemes. Cryptology ePrint Archive, Report 2017/233 (2017). EUROCRYPT (2017)Google Scholar
  3. 3.
    Akinyele, J.A., Lehmann, C.U., Green, M.D., Pagano, M.W., Peterson, Z.N.J., Rubin, A.D.: Self-protecting electronic medical records using attribute-based encryption. Cryptology ePrint Archive, Report 2010/565 (2010). http://eprint.iacr.org/2010/565
  4. 4.
    Applebaum, B., Arkis, B., Raykov, P., Vasudevan, P.N.: Conditional disclosure of secrets: amplification, closure, amortization, lower-bounds, and separations. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 24, p. 38 (2017)Google Scholar
  5. 5.
    Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/relic
  6. 6.
    Attrapadung, N.: Dual system encryption via doubly selective security: framework, fully secure functional encryption for regular languages, and more. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–577. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_31 CrossRefGoogle Scholar
  7. 7.
    Attrapadung, N.: Dual system encryption framework in prime-order groups. Cryptology ePrint Archive, Report 2015/390 (2015). http://eprint.iacr.org/2015/390
  8. 8.
    Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03298-1_16 CrossRefGoogle Scholar
  9. 9.
    Attrapadung, N., Imai, H.: Dual-policy attribute based encryption. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 168–185. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01957-9_11 CrossRefGoogle Scholar
  10. 10.
    Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryption for dual predicate and dual policy via computational encodings. Cryptology ePrint Archive, Report 2015/157 (2015). http://eprint.iacr.org/2015/157
  11. 11.
    Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. Cryptology ePrint Archive, Report 2005/133 (2005). http://eprint.iacr.org/2005/133
  12. 12.
    Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20901-7_2 CrossRefGoogle Scholar
  13. 13.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-70936-7_29 CrossRefGoogle Scholar
  14. 14.
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. J. Cryptol. 20(3), 265–294 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46803-6_20 Google Scholar
  16. 16.
    Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40084-1_25 CrossRefGoogle Scholar
  17. 17.
    Chen, J., Wee, H.: Dual system groups and its applications – compact hibe and more. Cryptology ePrint Archive, Report 2014/265 (2014). http://eprint.iacr.org/2014/265
  18. 18.
    Dinh, T.T.A., Datta, A.: Streamforce: outsourcing access control enforcement for stream data to the clouds. In: Fourth ACM Conference on Data and Application Security and Privacy, CODASPY 2014, San Antonio, TX, USA, 03–05 March 2014, pp. 13–24 (2014)Google Scholar
  19. 19.
    Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient fully collusion-resilient traitor tracing and revocation schemes. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 10, pp. 121–130. ACM Press, October 2010Google Scholar
  20. 20.
    Gay, R., Kerenidis, I., Wee, H.: Communication complexity of conditional disclosure of secrets and attribute-based encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 485–502. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48000-7_24 CrossRefGoogle Scholar
  21. 21.
    Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 650–662. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-43948-7_54 Google Scholar
  22. 22.
    Guo, F., Kim, J., Susilo, W., Au, M.H.: A tag based encoding: an efficient encoding for predicate encoding in prime order groups. Cryptology ePrint Archive, Report 2016/655 (2016). http://eprint.iacr.org/2016/655
  23. 23.
    Junod, P., Karlov, A.: An efficient public-key attribute-based broadcast encryption scheme allowing arbitrary access policies. In: Proceedings of the Tenth Annual ACM Workshop on Digital Rights Management, DRM 2010, pp. 13–24. ACM, New York (2010)Google Scholar
  24. 24.
    Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of the 8th IEEE Structure in Complexity Theory, pp. 102–111. IEEE Computer Society Press (1993)Google Scholar
  25. 25.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78967-3_9 CrossRefGoogle Scholar
  26. 26.
    Lewko, A.B.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29011-4_20 CrossRefGoogle Scholar
  27. 27.
    Lewko, A.B., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-11799-2_27 CrossRefGoogle Scholar
  28. 28.
    Lewko, A.B., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20465-4_31 CrossRefGoogle Scholar
  29. 29.
    Lewko, A.B., Waters, B.: New proof methods for attribute-based encryption: achieving full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32009-5_12 CrossRefGoogle Scholar
  30. 30.
    Liu, Z., Wong, D.S.: Practical ciphertext-policy attribute-based encryption: traitor tracing, revocation, and large universe. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 127–146. Springer, Cham (2015). doi: 10.1007/978-3-319-28166-7_7 CrossRefGoogle Scholar
  31. 31.
    Lubicz, D., Sirvent, T.: Attribute-based broadcast encryption scheme made efficient. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 325–342. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-68164-9_22 CrossRefGoogle Scholar
  32. 32.
    Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext delegation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32009-5_13 CrossRefGoogle Scholar
  33. 33.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi: 10.1007/11426639_27 CrossRefGoogle Scholar
  34. 34.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). doi: 10.1007/3-540-39568-7_5 CrossRefGoogle Scholar
  35. 35.
    Wang, F., Mickens, J., Zeldovich, N., Vaikuntanathan, V.: Sieve: cryptographically enforced access control for user data in untrusted clouds. In: 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16), pp. 611–626, Santa Clara, CA. USENIX Association, March 2016Google Scholar
  36. 36.
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03356-8_36 CrossRefGoogle Scholar
  37. 37.
    Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54242-8_26 CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  • Miguel Ambrona
    • 1
    • 2
  • Gilles Barthe
    • 1
  • Benedikt Schmidt
    • 3
  1. 1.IMDEA Software InstituteMadridSpain
  2. 2.Universidad Politécnica de MadridMadridSpain
  3. 3.GoogleMountain ViewUSA

Personalised recommendations