Advertisement

Identity-Based Encryption from the Diffie-Hellman Assumption

  • Nico DöttlingEmail author
  • Sanjam Garg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10401)

Abstract

We provide the first constructions of identity-based encryption and hierarchical identity-based encryption based on the hardness of the (Computational) Diffie-Hellman Problem (without use of groups with pairings) or Factoring. Our construction achieves the standard notion of identity-based encryption as considered by Boneh and Franklin [CRYPTO 2001]. We bypass known impossibility results using garbled circuits that make a non-black-box use of the underlying cryptographic primitives.

Notes

Acknowledgments

We thank the anonymous reviewers of CRYPTO 2017 for their valuable feedback.

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13190-5_28 CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14623-7_6 CrossRefGoogle Scholar
  3. 3.
    Agrawal, S., Boyen, X.: Identity-based encryption from lattices in the standard model. Manuscript (2009)Google Scholar
  4. 4.
    Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfuscation and applications. Cryptology ePrint Archive, Report 2013/689 (2013). http://eprint.iacr.org/2013/689
  5. 5.
    Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press, Raleigh, 16–18 October 2012Google Scholar
  6. 6.
    Bellare, M., Rogaway, P., Random oracles are practical: a paradigm for designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press, Fairfax, 3–5 November 1993Google Scholar
  7. 7.
    Biham, E., Boneh, D., Reingold, O.: Generalized Diffie-Hellman modulo a composite is not weaker than factoring. Cryptology ePrint Archive, Report 1997/014 (1997). http://eprint.iacr.org/1997/014
  8. 8.
    Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24676-3_14 CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-28628-8_27 CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). doi: 10.1007/11426639_26 CrossRefGoogle Scholar
  11. 11.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). doi: 10.1007/3-540-44647-8_13 CrossRefGoogle Scholar
  12. 12.
    Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: 48th FOCS, pp. 647–657. IEEE Computer Society Press, Providence, 20–23 October 2007Google Scholar
  13. 13.
    Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the impossibility of basing identity based encryption on trapdoor permutations. In: 49th FOCS, pp. 283–292. IEEE Computer Society Press, Philadelphia, 25–28 October 2008Google Scholar
  14. 14.
    Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54242-8_3 CrossRefGoogle Scholar
  15. 15.
    Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003). doi: 10.1007/3-540-39200-9_16 CrossRefGoogle Scholar
  17. 17.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13190-5_27 CrossRefGoogle Scholar
  18. 18.
    Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic receiver oblivious transfer and its applications. In: CRYPTO (2017, to appear)Google Scholar
  19. 19.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001). doi: 10.1007/3-540-45325-3_32 CrossRefGoogle Scholar
  20. 20.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. Manuscript (2017)Google Scholar
  22. 22.
    Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–476. ACM Press, Palo Alto, 1–4 June 2013Google Scholar
  23. 23.
    Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: Guruswami, V. (ed.) 56th FOCS, pp. 210–229. IEEE Computer Society Press, Berkeley, 17–20 October 2015Google Scholar
  24. 24.
    Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp. 449–458. ACM Press, Portland, 14–17 June 2015Google Scholar
  25. 25.
    Gentry, C., Halevi, S.: Hierarchical identity based encryption with polynomially many levels. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 437–456. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00457-5_26 CrossRefGoogle Scholar
  26. 26.
    Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_23 CrossRefGoogle Scholar
  27. 27.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, Victoria, 17–20 May 2008Google Scholar
  28. 28.
    Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002). doi: 10.1007/3-540-36178-2_34 CrossRefGoogle Scholar
  29. 29.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended abstract). In: 25th FOCS, pp. 464–479. IEEE Computer Society Press, Singer Island, 24–26 October 1984Google Scholar
  30. 30.
    Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: 21st ACM STOC, pp. 25–32. ACM Press, Seattle, 15–17 May 1989Google Scholar
  31. 31.
    Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03356-8_37 CrossRefGoogle Scholar
  32. 32.
    Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002). doi: 10.1007/3-540-46035-7_31 CrossRefGoogle Scholar
  33. 33.
    Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. Cryptology ePrint Archive, Report 1998/010 (1998). http://eprint.iacr.org/1998/010
  35. 35.
    Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-11799-2_27 CrossRefGoogle Scholar
  36. 36.
    Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptol. 22(2), 161–188 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38348-9_42 CrossRefGoogle Scholar
  38. 38.
    McCurley, K.S.: A key distribution system equivalent to factoring. J. Cryptol. 1(2), 95–105 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). doi: 10.1007/3-540-39799-X_31 Google Scholar
  40. 40.
    Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: 21st ACM STOC, pp. 33–43. ACM Press, Seattle, 15–17 May 1989Google Scholar
  41. 41.
    Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14623-7_11 CrossRefGoogle Scholar
  42. 42.
    Papakonstantinou, P.A., Rackoff, C.W., Vahlis, Y.: How powerful are the DDH hard groups? Cryptology ePrint Archive, Report 2012/653 (2012). http://eprint.iacr.org/2012/653
  43. 43.
    Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signature and public-key cryptosystems. Commun. Assoc. Comput. Mach. 21(2), 120–126 (1978)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). doi: 10.1007/3-540-39568-7_5 CrossRefGoogle Scholar
  45. 45.
    Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 560–578. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-70583-3_46 CrossRefGoogle Scholar
  46. 46.
    Shmuely, Z.: Composite Diffie-hellman public-key generating systems are hard to break. Technical report no. 356, Computer Science Department, Technion, Israel (1985)Google Scholar
  47. 47.
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03356-8_36 CrossRefGoogle Scholar
  48. 48.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005). doi: 10.1007/11426639_7 CrossRefGoogle Scholar
  49. 49.
    Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd FOCS, pp. 160–164. IEEE Computer Society Press, Chicago, 3–5 November 1982Google Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  1. 1.University of California, BerkeleyBerkeleyUSA

Personalised recommendations