Advertisement

Robust Non-interactive Multiparty Computation Against Constant-Size Collusion

  • Fabrice BenhamoudaEmail author
  • Hugo Krawczyk
  • Tal Rabin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10401)

Abstract

Non-Interactive Multiparty Computations (Beimel et al., Crypto 2014) is a very powerful notion equivalent (under some corruption model) to garbled circuits, Private Simultaneous Messages protocols, and obfuscation. We present robust solutions to the problem of Non-Interactive Multiparty Computation in the computational and information-theoretic models. Our results include the first efficient and robust protocols to compute any function in \(NC^1\) for constant-size collusions, in the information-theoretic setting and in the computational setting, to compute any function in P for constant-size collusions, assuming the existence of one-way functions. Our constructions start from a Private Simultaneous Messages construction (Feige, Killian Naor, STOC 1994 and Ishai, Kushilevitz, ISTCS 1997) and transform it into a Non-Interactive Multiparty Computation for constant-size collusions.

We also present a new Non-Interactive Multiparty Computation protocol for symmetric functions with significantly better communication complexity compared to the only known one of Beimel et al.

Keywords

Non-interactive multiparty computation Private Simultaneous Messages 

Notes

Acknowledgments

This work was supported by the Defense Advanced Research Projects Agency (DARPA) and Army Research Office (ARO) under Contract No. W911NF-15-C-0236.

References

  1. 1.
    Baker, R.C., Harman, G., Pintz, J.: The difference between consecutive primes, ii. Proc. Lond. Math. Soc. 83(3), 532–562 (2001). http://www.cs.umd.edu/~gasarch/BLOGPAPERS/BakerHarmanPintz.pdf
  2. 2.
    Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those languages in nc\({^1}\). In: Hartmanis, J. (ed.) Proceedings of the 18th Annual ACM Symposium on Theory of Computing, 28–30 May 1986, Berkeley, California, USA, pp. 1–5. ACM (1986). http://doi.acm.org/10.1145/12130.12131
  3. 3.
    Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 387–404. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44381-1_22 CrossRefGoogle Scholar
  4. 4.
    Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended abstract). In: 26th ACM STOC, pp. 554–563. ACM Press, May 1994Google Scholar
  5. 5.
    Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_32 CrossRefGoogle Scholar
  6. 6.
    Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-70936-7_11 CrossRefGoogle Scholar
  7. 7.
    Halevi, S., Ishai, Y., Jain, A., Kushilevitz, E., Rabin, T.: Secure multiparty computation with general interaction patterns. In: Sudan, M. (ed.) ITCS 2016, pp. 157–168. ACM, New York (2016)Google Scholar
  8. 8.
    Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 132–150. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22792-9_8 CrossRefGoogle Scholar
  9. 9.
    Ishai, Y., Kushilevitz, E.: Private simultaneous message protocols with applications. In: Proceedings of ISTCS, pp. 174–184 (1997)Google Scholar
  10. 10.
    Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256. Springer, Heidelberg (2002). http://dx.doi.org/10.1007/3-540-45465-9_22 CrossRefGoogle Scholar
  11. 11.
    Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of Structures in Complexity Theory, pp. 102–111 (1993)Google Scholar
  12. 12.
    Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC, pp. 20–31. ACM Press, May 1988Google Scholar
  13. 13.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-correcting Codes. Elsevier, Amsterdam (1977)zbMATHGoogle Scholar
  14. 14.
    Obana, S., Yoshida, M.: An efficient construction of non-interactive secure multiparty computation. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 604–614. Springer, Cham (2016). doi: 10.1007/978-3-319-48965-0_39 CrossRefGoogle Scholar
  15. 15.
    Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986Google Scholar
  16. 16.
    Yoshida, M., Obana, S.: On the (in)efficiency of non-interactive secure multiparty computation. In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 185–193. Springer, Cham (2016). doi: 10.1007/978-3-319-30840-1_12 CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  1. 1.IBM ResearchYorktown HeightsUSA

Personalised recommendations