Whole Number Thinking, Learning and Development: Neuro-cognitive, Cognitive and Developmental Approaches

  • Joanne MulliganEmail author
  • Lieven VerschaffelEmail author
  • Anna Baccaglini-Frank
  • Alf Coles
  • Peter Gould
  • Shengqing He
  • Yunpeng Ma
  • Jasmina Milinković
  • Andreas Obersteiner
  • Nicole Roberts
  • Nathalie Sinclair
  • Yanling Wang
  • Shu Xie
  • Der-Ching Yang
Part of the New ICMI Study Series book series (NISS)


This chapter focuses on the neuro-cognitive, cognitive and developmental analyses of whole number arithmetic (WNA) learning. It comprises five sections. The first section provides an overview of the working group discussion. Section 7.2 reviews neuro-cognitive perspectives of learning WNA but looks beyond these to explain the transcoding of numerals to number words. In the third section, children’s early mathematics-related competencies in reasoning about quantitative relations, patterns and structures are explored from new theoretical perspectives. Studies presented and discussed in working group 2 are presented in the following section as exemplars of intervention studies. The final section examines methodologies utilized in neuro-cognitive, cognitive and developmental analyses of children’s whole number learning. It discusses study designs and their potentialities and limitations for understanding how children develop competencies with whole numbers as well as task designs in cognitive neuroscience research pertinent to number learning. The chapter concludes with implications for further research and teaching practice.

Supplementary material

Video 7.1

(MP4 15794 kb)

Video 7.2

(MP4 133137 kb)


  1. Aunio, P., & Niemivirta, M. (2010). Predicting children’s mathematical performance in grade one by early numeracy. Learning and Individual Differences, 20, 427–435.CrossRefGoogle Scholar
  2. Baccaglini-Frank, A., & Bartolini Bussi, M. G. (2015). Buone pratiche didattiche per prevenire falsi positivi nelle diagnosi di discalculia: Il progetto PerContare. Form@re-Open Journal per la formazione in rete, 15(3), 170–184.Google Scholar
  3. Baccaglini-Frank, A., & Maracci, M. (2015). Multi-touch technology and preschoolers’ development of number-sense. Digital Experiences in Mathematics Education, 1(1), 7–27.CrossRefGoogle Scholar
  4. Baccaglini-Frank, A., & Scorza, M. (2013). Preventing learning difficulties in early arithmetic: The PerContare Project. In T. Ramiro-Sànchez & M. P. Bermùdez (Eds.), Libro de Actas I Congreso Internacional de Ciencias de la Educatiòn y des Desarrollo (p. 341). Granada: Universidad de Granada.Google Scholar
  5. Baroody, A. J. (1999). Children’s relational knowledge of addition and subtraction. Cognition and Instruction, 17(2), 137–175.CrossRefGoogle Scholar
  6. Baroody, A. J., Torbeyns, J., & Verschaffel, L. (2009). Young children’s understanding and application of subtraction-related principles. Mathematical Thinking and Learning, 11(1–2), 2–9.CrossRefGoogle Scholar
  7. Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom artefacts and signs after a Vygotskian perspective. In L. English (Ed.), Handbook of international research in mathematics education (2nd ed., pp. 746–783). New York: Routledge.Google Scholar
  8. Beck, D. M. (2010). The appeal of the brain in the popular press. Perspectives on Psychological Science, 5, 762–766.CrossRefGoogle Scholar
  9. Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79, 1016–1031.CrossRefGoogle Scholar
  10. Britt, M. S., & Irwin, K. C. (2011). Algebraic thinking with and without algebraic representation: A pathway for learning. In J. Cai & E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 137–160). Berlin: Springer.CrossRefGoogle Scholar
  11. Bryant, P., Christie, C., & Rendu, A. (1999). Children’s understanding of the relation between addition and subtraction: Inversion, identity and decomposition. Journal of Experimental Child Psychology, 74, 194–212.CrossRefGoogle Scholar
  12. Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46(1), 3–18.CrossRefGoogle Scholar
  13. Butterworth, B., & Reeve, R. (2008). Verbal counting and spatial strategies in numerical tasks: Evidence from indigenous Australia. Philosophical Psychology, 21, 443–457.CrossRefGoogle Scholar
  14. Clayton, S., & Gilmore, C. (2015). Inhibition in dot comparison tasks. ZDM Mathematics Education, 47(5), 759–770.CrossRefGoogle Scholar
  15. Clements, D. H., & Sarama, J. (2011). Tools for early assessment in math (TEAM). Teacher’s Guide. Columbus: McGraw-Hill Education Series.Google Scholar
  16. Coles, A. (2014). Ordinality, neuro-science and the early learning of number. In P. Liljedahl, C. Nicol, S. Oesterle, & D. Allan (Eds.), Proceedings of the Thirty-eighth annual conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 329–336). Vancouver: PME.Google Scholar
  17. De Smedt, B., Ansari, D., Grabner, R. H., Hannula-Sormunen, M., Schneider, M., & Verschaffel, L. (2011). Cognitive neuroscience meets mathematics education: It takes two to tango. Educational Research Review, 6, 232–237.CrossRefGoogle Scholar
  18. Dehaene, S. (2011). The number sense: How the mind creates mathematics. New York: Oxford University Press.Google Scholar
  19. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506.CrossRefGoogle Scholar
  20. Dowker, A. (2008). Individual differences in numerical abilities in preschoolers. Developmental Science, 11, 650–654.CrossRefGoogle Scholar
  21. Ensor, P., Hoadley, U., Jacklin, H., Kuhn, C., Schnitte, E., Lombard, A., & van den Heuvel-Panhuizen, M. (2009). Specialising pedagogical text and time in Foundation Phase numeracy classrooms. Journal of Education, 47, 5–30.Google Scholar
  22. Fuson, K. C. (1988). Children’s counting and concepts of number. New York: Springer-Verlag.CrossRefGoogle Scholar
  23. Gattegno, C. (1974). The common sense of teaching mathematics. New York: Educational Solutions Worldwide Inc..Google Scholar
  24. Geary, D. C., Bow-Thomas, C. C., & Yao, Y. (1992). Counting knowledge and skill in cognitive addition: A comparison of normal and mathematically disabled children. Journal of Experimental Child Psychology, 54, 372–391.CrossRefGoogle Scholar
  25. Gebuis, T., & Reynvoet, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 14, 642–648.CrossRefGoogle Scholar
  26. Gilmore, C., & Bryant, P. (2006). Individual differences in children’s understanding of inversion and arithmetical skill. British Journal of Educational Psychology, 76, 309–331.CrossRefGoogle Scholar
  27. Gilmore, C., Attridge, N., & Inglis, M. (2011). Measuring the approximate number system. Quarterly Journal of Experimental Psychology, 64, 2099–2109.CrossRefGoogle Scholar
  28. Göbel, S. M., Watson, S. E., Lervåg, A., & Hulme, C. (2014). Children’s arithmetic development: It is number knowledge, not the approximate number sense, that counts. Psychological Science, 25(3), 789–798.CrossRefGoogle Scholar
  29. Griffin, S. (2004). Teaching number sense. Educational Leadership, 61(5), 39–42.Google Scholar
  30. Hannula, M. M., & Lehtinen, E. (2005). Spontaneous focusing on numerosity and mathematical skills of young children. Learning and Instruction, 15(3), 237–256.CrossRefGoogle Scholar
  31. Jordan, N. C., Glutting, J., & Ramineni, C. (2010). The importance of number sense to mathematics achievement in first and third grades. Learning and Individual Differences, 20, 82–88.CrossRefGoogle Scholar
  32. Krajewski, K., & Schneider, W. (2009). Early development of quantity to number-word linkage as a precursor of mathematical school achievement and mathematical difficulties: Findings from a four-year longitudinal study. Learning and Instruction, 19(6), 513–526.CrossRefGoogle Scholar
  33. Lyons, I., & Beilock, S. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121(2), 256–261.CrossRefGoogle Scholar
  34. McMullen, J., Hannula-Sormunen, M. M., & Lehtinen, E. (2013). Young children’s recognition of quantitative relations in mathematically unspecified settings. Journal of Mathematical Behavior, 32, 450–460.CrossRefGoogle Scholar
  35. McMullen, J., Hannula-Sormunen, M. M., & Lehtinen, E. (2014). Spontaneous focusing on quantitative relations in the development of children’s fraction knowledge. Cognition and Instruction, 32(2), 198–218.CrossRefGoogle Scholar
  36. Mulligan, J. T., & Mitchelmore, M. C. (2009). Awareness of pattern and structure in early mathematical development. Mathematics Education Research Journal, 21(2), 33–49.CrossRefGoogle Scholar
  37. Mulligan, J. T., & Mitchelmore, M. C. (2013). Early awareness of mathematical pattern and structure. In L. English & J. Mulligan (Eds.), Reconceptualizing early mathematics learning (pp. 29–46). Dordrecht: Springer.CrossRefGoogle Scholar
  38. Mulligan, J. T., Mitchelmore, M. C., English, L., & Crevensten, N. (2013). Reconceptualizing early mathematics learning: The fundamental role of pattern and structure. In L. English & J. Mulligan (Eds.), Reconceptualizing early mathematics learning (pp. 47–66). Dordrecht: Springer.CrossRefGoogle Scholar
  39. Mulligan, J. T., Mitchelmore, M. C., & Stephanou, A. (2015). Pattern and Structure Assessment (PASA): An assessment program for early mathematics (Years F–2) teacher guide. Melbourne: ACER Press.Google Scholar
  40. Nunes, T., Bryant, P., Burman, D., Bell, D., Evans, D., & Hallett, D. (2008). Deaf children’s informal knowledge of multiplicative reasoning. Journal of Deaf Studies and Deaf Education, 14, 260–277.CrossRefGoogle Scholar
  41. Nunes, T., Bryant, P., Barros, R., & Sylva, K. (2012). The relative importance of two different mathematical abilities to mathematical achievement. British Journal of Educational Psychology, 82, 136–156.CrossRefGoogle Scholar
  42. Peeters, D., Degrande, T., Ebersbach, M., Verschaffel, L., & Luwel, K. (2015). Children’s use of number line estimation strategies. European Journal of Psychology of Education. (Online first) doi: CrossRefGoogle Scholar
  43. Peters, G., De Smedt, B., Torbeyns, J., Ghesquière, P., & Verschaffel, L. (2010). Using addition to solve subtractions in the number domain up to 20. Acta Psychologica, 133, 163–169.CrossRefGoogle Scholar
  44. Piaget, J., & Szeminska, A. (1952). The child’s conception of number. London: Routledge. (Original work published 1941).Google Scholar
  45. Reeve, R., Reynolds, F., Humberstone, J., & Butterworth, B. (2012). Stability and change in markers of core numerical competencies. Journal of Experimental Psychology: General, 141, 649–666.CrossRefGoogle Scholar
  46. Resnick, L. B., Bill, V. L., Lesgold, S. B., & Leer, N. M. (1991). Thinking in arithmetic class. In B. Means, C. Chelemer, & M. S. Knapp (Eds.), Teaching advanced skills to at-risk students (pp. 27–53). San Francisco: Jossey-Bass.Google Scholar
  47. Robinson, K. M., Ninowski, L. E., & Gray, M. L. (2006). Children’s understanding of the arithmetic concepts of inversion and associativity. Journal of Experimental Child Psychology, 94, 349–362.CrossRefGoogle Scholar
  48. Rubinsten, O., & Henik, A. (2005). Automatic activation of internal magnitudes: A study of developmental dyscalculia. Neuropsychology, 19, 641–648.CrossRefGoogle Scholar
  49. Sasanguie, D., & Reynvoet, B. (2013). Number comparison and number line estimation rely on different mechanisms. Psychologica Belgica, 53, 17–35.CrossRefGoogle Scholar
  50. Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B. (2014). The approximate number system is not predictive for symbolic number processing in kindergarteners. The Quarterly Journal of Experimental Psychology, 67, 271–280.CrossRefGoogle Scholar
  51. Schleifer, P., & Landerl, K. (2011). Subitizing and counting in typical and atypical development. Developmental Science, 14, 280–291.CrossRefGoogle Scholar
  52. Schmittau, J. (2011). The role of theoretical analysis in developing algebraic thinking: A Vygotskian perspective. In J. Cai & E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 71–86). Berlin: Springer.CrossRefGoogle Scholar
  53. Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S. S., Stricker, J., & De Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), p. 16.CrossRefGoogle Scholar
  54. Schoenfeld, A. H. (2007). Method. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 69–107). Charlotte: Information Age Publishing.Google Scholar
  55. Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75, 428–444.CrossRefGoogle Scholar
  56. Siegler, R. S., & Lemaire, P. (1997). Older and younger adults’ strategy choices in multiplication: Testing predictions of ASCM using the choice/no-choice method. Journal of Experimental Psychology: General, 126, 71–92.CrossRefGoogle Scholar
  57. Sinclair, N., & Jackiw, N. (2011). TouchCounts. Application for the iPad.
  58. Sinclair, N., & Pimm, D. (2015). Whatever be their number: Counting on the visible, the audible, and the tangible. In M. Meletiou-Mavrotheris, K. Mavrou, & E. Paparistodemou (Eds.), Integrating touch-enabled and mobile devices into contemporary mathematics education (pp. 50–80). Hershey: IGI Global.Google Scholar
  59. Skwarchuk, S. L., Sowinski, C., & LeFevre, J. A. (2014). Formal and informal home learning activities in relation to children’s early numeracy and literacy skills: The development of a home numeracy model. Journal of Experimental Child Psychology, 121, 63–84.CrossRefGoogle Scholar
  60. Stokes, D. E. (1997). Pasteur’s quadrant: Basic science and technical innovation. Washington, DC: Brookings.Google Scholar
  61. Watson, A., & Ohtani, M. (2015). Task design in mathematics education: The 22nd ICMI Study. New York: Springer.CrossRefGoogle Scholar

Cited papers from Sun, X., Kaur, B., & Novotna, J. (Eds.). (2015). Conference proceedings of the ICMI study 23: Primary mathematics study on whole numbers. Retrieved February 10, 2016, from

  1. Baccaglini-Frank, A. (2015). Preventing low achievement in arithmetic through the didactical materials of the PerContare project (pp. 169–176).Google Scholar
  2. Butterworth, B. (2015). Low numeracy: From brain to education (pp. 21–33).Google Scholar
  3. Elia, I., & van den Heuvel-Panhuizen, M. (2015). Mapping kindergartners’ number competence (pp. 177–185).Google Scholar
  4. Gervasoni, A., & Parish, L. (2015). Insights and implications about the whole number knowledge of grade 1 to grade 4 children (pp. 440–447).Google Scholar
  5. Gould, P. (2015). Recalling a number line to identify numerals (pp. 186–193).Google Scholar
  6. He, S. (2015). How do Chinese students solve addition/subtraction problems: A review of cognitive strategy (pp. 194–202).Google Scholar
  7. Ma, Y., Xie, S., & Wang, Y. (2015). Analysis of students’ systematic errors and teaching strategies for 3-digit multiplication (pp. 203–211).Google Scholar
  8. Milinković, J. (2015). Counting strategies and system of natural number representations in young children (pp. 212–219).Google Scholar
  9. Mulligan, J., & Woolcott, G. (2015). What lies beneath? Conceptual connectivity underlying whole number arithmetic (pp. 220–228).Google Scholar
  10. Obersteiner, A., Moll, G., Reiss, K., & Pant, H. A. (2015). Whole number arithmetic: Competency models and individual development (pp. 245–250).Google Scholar
  11. Roberts, N. (2015). Interpreting children’s representations of whole number additive relations in the early grades (pp. 245–250).Google Scholar
  12. Sayers, J., & Andrews, P. (2015). Foundational number sense: The basis for whole number arithmetic competence (pp. 124–131).Google Scholar
  13. Sinclair, N., & Coles, A. (2015). ‘A trillion is after one hundred’: Early number and the development of symbolic awareness (pp. 251–259).Google Scholar
  14. Verschaffel, L., Torbeyns, J., Peters, G., De Smedt, B., & Ghesquière, P. (2015). Analysing subtraction-by-addition in the number domain 20–100 by means of verbal protocol vs reaction time data (pp. 260–267).Google Scholar
  15. Yang, D-C. (2015). Performance of fourth graders in judging reasonableness of computational results for whole numbers (pp. 268–276).Google Scholar
  16. Young-Loveridge, J., & Bicknell, B. (2015). Using multiplication and division contexts to build place-value understanding (pp. 379–387).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Macquarie UniversitySydneyAustralia
  2. 2.Katholieke Universiteit LeuvenLeuvenBelgium
  3. 3.Università di PisaPisaItaly
  4. 4.University of BristolBristolUK
  5. 5.NSW Department of Education and CommunitiesSydneyAustralia
  6. 6.Hangzhou Normal UniversityHangzhouChina
  7. 7.Northeast Normal UniversityChangchunChina
  8. 8.University of BelgradeBelgradeSerbia
  9. 9.Technische Universität MünchenMünchenGermany
  10. 10.University of the WitwatersrandJohannesburgSouth Africa
  11. 11.Simon Fraser UniversityBurnabyCanada
  12. 12.National Chiayi UniversityChiayiTaiwan

Personalised recommendations