Advertisement

Special Needs in Research and Instruction in Whole Number Arithmetic

  • Lieven VerschaffelEmail author
  • Anna Baccaglini-Frank
  • Joanne Mulligan
  • Marja van den Heuvel-Panhuizen
  • Yan Ping Xin
  • Brian Butterworth
Chapter
Part of the New ICMI Study Series book series (NISS)

Abstract

This chapter provides an overview of the ICME 23 Study panel on special needs in research and instruction in whole number arithmetic. It starts with a general introduction by Verschaffel about the state of affairs in and the major issues and challenges for research and educational practice in the field of mathematical learning difficulties (MLD). Afterwards these issues and challenges are explored and discussed from four different angles by four scholars with complementary specializations in the domain of children with MLD and/or other special needs in the curricular domain of whole number arithmetic, namely, Anna Baccaglini-Frank, Joanne Mulligan, Marja van den Heuvel-Panhuizen and Yan Ping Xin. Finally, Brian Butterworth discusses these four contributions, particularly with respect to the questions ‘what constitutes the “mathematics” that MLD research and practice should address’ and ‘what can be considered as appropriate interventions for children with special needs’

Supplementary material

Video 16.1

(M4V 39399 kb)

References

  1. Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature reviews. Neuroscience, 9, 278–291.Google Scholar
  2. Baccaglini-Frank, A., & Scorza, M. (2013). Preventing learning difficulties in early arithmetic: The PerContare project. In T. Ramiro-Sànchez & M. P. Bermùdez (Eds.), Libro de Actas I Congreso Internacional de Ciencias de la Educatiòn y des Desarrollo (p. 341). Granada: Universidad de Granada.Google Scholar
  3. Baccaglini-Frank, A. E., & Bartolini Bussi, M. G. (2015). Buone pratiche didattiche per prevenire falsi positivi nelle diagnosi di discalculia: il progetto “PerContare”. Form@re – Open Journal per la formazione in rete, [S.l.], 15(3), 170–184.Google Scholar
  4. Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective. In L. English, M. Bartolini Bussi, G. Jones, R. Lesh, & D. Tirosh (Eds.), Handbook of international research in mathematics education (2nd revised edn) (pp. 746–805). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  5. Benavides-Varela, S., Butterworth, B., Burgio, F., Arcara, G., Lucangeli, D., & Semenza, C. (2016). Numerical activities and information learned at home link to the exact numeracy skills in 5–6 years-old children. Frontiers in Psychology, 7(94).Google Scholar
  6. Berch, D. B., & Mazzocco, M. M. M. (2007). Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities. Baltimore: Paul H. Brookes Publishing.Google Scholar
  7. Bryant, D. P., Bryant, B. R., Roberts, G., Vaughn, S., Pfannenstiel, K. H., Porterfield, J., & Gersten, R. (2011). Early numeracy intervention program for first-grade students with mathematics difficulties. Exceptional Children, 78, 7–23.CrossRefGoogle Scholar
  8. Butterworth, B. (2005). Developmental dyscalculia. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 455–467). Hove: Psychology Press.Google Scholar
  9. Butterworth, B. (2006). Mathematical expertise. In K. A. Ericsson, N. Charness, P. J. Feltovich, & R. R. Hoffmann (Eds.), Cambridge handbook of expertise and expert performance (pp. 553–568). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  10. Butterworth, B., & Kovas, Y. (2013). Understanding neurocognitive developmental disorders can improve education for all. Science, 340, 300–305.CrossRefGoogle Scholar
  11. Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332, 1049–1053.CrossRefGoogle Scholar
  12. Clements, D. H., & Sarama, J. (2011). Early childhood teacher education: The case of geometry. Journal of Mathematics Teacher Education, 14(2), 133–148.CrossRefGoogle Scholar
  13. Davis, B. (Ed.). (2015). Spatial reasoning in the early years: Principles, assertions, and speculations. New York: Routledge.Google Scholar
  14. De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). The relationship between symbolic and non-symbolic numerical magnitude processing and the typical and atypical development of mathematics: A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2, 48–55.CrossRefGoogle Scholar
  15. Dehaene, S. (2009). Reading in the brain: The science and evolution of a human invention. New York: Penguin Viking.Google Scholar
  16. Dowker, A. (2008). Mathematical difficulties: Psychology and intervention. Amsterdam: Elsevier/Academic.Google Scholar
  17. Fias, W., & Fischer, M. H. (2005). Spatial representation of numbers. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 43–54). Hove: Psychology Press.Google Scholar
  18. Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22, 455–479.CrossRefGoogle Scholar
  19. Gelderblom, G. (2008). Effectief omgaan met zwakke rekenaars [Effectively working with students who are weak in mathematics]. Amersfoort: CPS.Google Scholar
  20. Hannula, M. M., & Lehtinen, E. (2005). Spontaneous focusing on numerosity and mathematical skills of young children. Learning and Instruction, 15, 237–256.CrossRefGoogle Scholar
  21. Harcourt Assessment Inc. (2004). Stanford Achievement Test series: Tenth edition technical data report. San Antonio: Author.Google Scholar
  22. Hord, C., & Xin, Y. P. (2015). Teaching area and volume to students with mild intellectual disability. The Journal of Special Education, 49(2), 118–128.CrossRefGoogle Scholar
  23. Karagiannakis, G., & Baccaglini-Frank, A. (2014). The DeDiMa battery: A tool for identifying students’ mathematical learning profiles. Health Psychology Review, 2(4), 291–297.Google Scholar
  24. Karagiannakis, G., Baccaglini-Frank, A., & Papadatos, Y. (2014). Mathematical learning difficulties subtypes classification. Frontiers in Human Neuroscience, 8(57).Google Scholar
  25. Karagiannakis, G., Baccaglini-Frank, A., & Roussos, P. (2018). Detecting difficulties in learning mathematics through a model-driven experimental battery. The Australian Journal of Learning Difficulties, 23(1), 115–141.Google Scholar
  26. Kouba, V. L. (1989). Children’s solution strategies for equivalent set multiplication and division word problems. Journal for Research in Mathematics Education, 20(2), 147–158.CrossRefGoogle Scholar
  27. Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93, 99–125.CrossRefGoogle Scholar
  28. Landerl, K., Fussenegger, B., Moll, K., & Willburger, E. (2009). Dyslexia and dyscalculia: Two learning disorders with different cognitive profiles. Journal of Experimental Child Psychology, 103, 309–324.CrossRefGoogle Scholar
  29. Mazzocco, M. M. M., & Räsänen, P. (2013). Contributions of longitudinal studies to evolving definitions and knowledge of developmental dyscalculia. Trends in Neuroscience and Education, 2(2), 65–73.CrossRefGoogle Scholar
  30. McDonald, B. (2015). Ben’s perception of space and subitizing activity: A constructivist teaching experiment. Mathematics Education Research Journal, 27,(4), 563–584.Google Scholar
  31. Mulligan, J. T. (2011). Towards understanding the origins of children’s difficulties in mathematics learning. Australian Journal of Learning Difficulties, 16(1), 19–39.CrossRefGoogle Scholar
  32. Mulligan, J. T., English, L. D., Mitchelmore, M. C., & Crevensten, N. (2013). Reconceptualising early mathematics learning: The fundamental role of pattern and structure. In L. D. English & J. T. Mulligan (Eds.), Reconceptualizing early mathematics learning (pp. 47–66). New York: Springer.CrossRefGoogle Scholar
  33. Mulligan, J. T., Mitchelmore, M. C., & Stephanou, A. (2015). Pattern and Structure Assessment (PASA): An assessment program for early mathematics (years F-2) teacher guide. Melbourne: ACER Press.Google Scholar
  34. National Council of Teachers of Mathematics. (2012). Common core state standards for mathematics. Reston: National Council of Teachers of Mathematics.Google Scholar
  35. Papic, M. M., Mulligan, J. T., & Mitchelmore, M. C. (2011). Assessing the development of preschoolers’ mathematical patterning. Journal for Research in Mathematics Education, 42(3), 237–268.CrossRefGoogle Scholar
  36. Peltenburg, M. (2012). Mathematical potential of special education students. PhD thesis, Utrecht University.Google Scholar
  37. Peltenburg, M., van den Heuvel-Panhuizen, M., & Robitzsch, A. (2010). ICT-based dynamic assessment to reveal special education students’ potential in mathematics. Research Papers in Education, 25, 319–334.CrossRefGoogle Scholar
  38. Peltenburg, M., van den Heuvel-Panhuizen, M., & Robitzsch, A. (2012). Special education students’ use of indirect addition in solving subtraction problems up to 100: A proof of the didactical potential of an ignored procedure. Educational Studies in Mathematics, 79(3), 351–369.CrossRefGoogle Scholar
  39. Peltenburg, M., van den Heuvel-Panhuizen, M., & Robitzsch, A. (2013). Special education students’ strategies in solving elementary combinatorics problems. In A. M. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th PME conference (Vol. 4, pp. 17–24). Kiel: PME.Google Scholar
  40. Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., et al. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116, 33–41.CrossRefGoogle Scholar
  41. Reeve, R., Reynolds, F., Humberstone, J., & Butterworth, B. (2012). Stability and change in markers of core numerical competencies. Journal of Experimental Psychology: General, 141, 649–666.CrossRefGoogle Scholar
  42. Rourke, B. P. (1989). Nonverbal learning disabilities: The syndrome and the model. New York: Guilford.Google Scholar
  43. Starkey, G. S., & McCandliss, B. D. (2014). The emergence of “groupitizing” in children’s numerical cognition. Journal of Experimental Child Psychology, 126, 120–137.CrossRefGoogle Scholar
  44. Steffe, L. P. (1990). Adaptive mathematics teaching. In T. J. Cooney & C. R. Hirsch (Eds.), Teaching and learning mathematics in the 1990s (pp. 41–51). Reston: National Council of Teachers of Mathematics.Google Scholar
  45. Tzur, R., Johnson, H. L., McClintock, E., Kenney, R. H., Xin, Y. P., Si, L., Woodward, J., Hord, C. T., & Jin, X. (2013). Distinguishing schemes and tasks in children’s development of multiplicative reasoning. PNA: Revista de Investigación en Didáctica de la Matemática, 7(3), 85–101.Google Scholar
  46. van den Heuvel-Panhuizen, M. (1986). Het rekenonderwijs op de lom-school opnieuw ter discussie [Mathematics education in special education again up for debate]. Tijdschrift voor Orthopedagogiek, 25, 137–145.Google Scholar
  47. van den Heuvel-Panhuizen, M. (1996). A test on ratio: What a paper-and-pencil test can tell about the mathematical abilities of special education students. In M. van den Heuvel-Panhuizen (Ed.), Assessment and realistic mathematics education (pp. 233–255). Utrecht: CD-B Press, Utrecht University.Google Scholar
  48. Verdine, B., Chang, A., Filipowicz, A. T., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. S. (2014). Deconstructing building blocks: Preschoolers’ spatial assembly performance relates to early mathematics skills. Child Development, 85, 1062–1076.CrossRefGoogle Scholar
  49. Woolcott, G., Chamberlain, D., & Mulligan, J. (2015). Using network analysis to connect structural relationships in early mathematics assessment. In K. Beswick, T. Muir, & J. Wells (Eds.), Proceedings of the 39th conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 321–328). Hobart: PME.Google Scholar
  50. Xin, Y. P. (2012). Conceptual model-based problem solving: Teach students with learning difficulties to solve math problems. Rotterdam: Sense Publishers.CrossRefGoogle Scholar
  51. Xin, Y. P., & Hord, C. (2013). Conceptual model based teaching to facilitate geometry learning of students who struggle in mathematics. Journal of Scholastic Inquiry: Education, 1, 147–160.Google Scholar
  52. Xin, Y. P., Liu, J., Jones, S., Tzur, R., & Luo, S. I. (2016). A preliminary discourse analysis of constructivist-oriented math instruction for a student with learning disabilities. The Journal of Educational Research, 109(4), 436–447.CrossRefGoogle Scholar
  53. Xin, Y. P., Tzur, R., & Si, L. (2017). Nurturing multiplicative reasoning in students with learning disabilities in a computerized conceptual-modeling environment. West Lafayette: Purdue University.Google Scholar
  54. Xin, Y, P., Tzur, R., & Sin, L. (2017a). PGMB-COMPS© Math World Problem Solving Intelligent Tutor. West Lafayette: Purdue Research Foundation, Purdue University.Google Scholar
  55. Xin, Y. P., Tzur, R., Sin L., Hord C., Liu J., & Park, J. V. (2017b). An intelligent tutor-assisted math problem solving intervention program for students with learning difficulties. Learning Didabilities Quarterly, 40(1), 4–16Google Scholar

Cited papers from Sun, X., Kaur, B., & Novotna, J. (Eds.). (2015). Conference proceedings of the ICMI study 23: Primary mathematics study on whole numbers. Retrieved February 10, 2016, from www.umac.mo/fed/ICMI23/doc/Proceedings_ICMI_STUDY_23_final.pdf

  1. Baccaglini-Frank, A. (2015). Preventing low achievement in arithmetic through the didactical materials of the PerContare project (pp. 169–176).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Katholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Università di PisaPisaItaly
  3. 3.Macquarie UniversitySydneyAustralia
  4. 4.Utrecht UniversityUtrechtThe Netherlands
  5. 5.Purdue UniversityWest LafayetteUSA
  6. 6.University College LondonLondonUK

Personalised recommendations