Tradition in Whole Number Arithmetic

  • Ferdinando ArzarelloEmail author
  • Nadia Azrou
  • Maria G. Bartolini Bussi
  • Sarah Inés González de Lora Sued
  • Xu Hua Sun
  • Man Keung Siu
Part of the New ICMI Study Series book series (NISS)


The main topics discussed by the panel and the resulting questions to be answered are introduced along with some bibliographic references. The main topics of discussion concern the relationships between tradition and the verbal and non-verbal representations of numbers, numbers and artefacts of arithmetic and the role of technological devices in emulating traditional abaci and allowing direct interaction with the screens of multitouch devices in counting activities. Another crucial issue concerns the different languages that can be present in a classroom for historical and cultural reasons. This represents a challenge for teachers, who must cope with the ways in which words can shape the specific connotations of the meanings of numbers. Although all of these facets of numbers need to be coordinated with the standard mathematical concepts, they also appear in the multimodal representations that are used to teach them, such as words, textbooks, notes and teachers’ and students’ gestures. All of these factors intertwine and sometimes conflict with the richness of the representations and practices that children encounter outside school in their everyday lives.

Supplementary material

Video 15.1

(M4V 39738 kb)

Video 15.2

(M4V 116183 kb)


  1. Adler, J. (1997). A participatory-inquiry approach and the mediation of mathematical knowledge in a multilingual classroom. Educational Studies in Mathematics, 33(3), 235–258.CrossRefGoogle Scholar
  2. Arzarello, F., Robutti, O., & Bazzini, L. (2005). Acting is learning: Focus on the construction of mathematical concepts. Cambridge Journal of Education, 35(1), 55–67.CrossRefGoogle Scholar
  3. Ascher, M. (1991). Ethnomathematics: A multicultural view of mathematical ideas. Pacific Grove: Brooks/Cole Publishing.Google Scholar
  4. Bartolini Bussi, M. G., Sun, X., & Ramploud, A. (2013). A dialogue between cultures about task design for primary school. In C. Margolinas (Ed.), Proceedings of the International Commission on Mathematical Instruction Study 22: Task design in mathematics education (pp. 549–558). Oxford. Accessed 20 Jan 2016.
  5. Barton, B. (2008). The language of mathematics: Telling mathematical tales. New York: Springer.CrossRefGoogle Scholar
  6. Barwell, R., Clarkson, P., Halai, A., Kazima, M., Moschkovich, J., Planas, N., Setati Phakeng, M.., Valero, P., & Villavicencio Ubillús, M. (Eds.). (2015). Mathematics education and language diversity: The 21st ICMI study. New York: Springer.Google Scholar
  7. Bazzanella, C. (2011). Numeri per parlare. Bari: Laterza.Google Scholar
  8. Bishop, A. J. (1991). Mathematical enculturation: A cultural perspective on mathematics education. Dordrecht: Kluwer Academic Publishers.Google Scholar
  9. Boero, P., & Guala, E. (2008). Development of mathematical knowledge and beliefs of teachers: The role of cultural analysis of the content to be taught. In P. Sullivan & T. Wood (Eds.), International handbook of mathematics teacher education (vol. 1, pp. 223–244). Rotterdam: Sense Publishers.Google Scholar
  10. Brissiaud, R., Clerc, P., & Ouzoulias, A. (2002). J’apprends les maths – CP avec Tchou. Paris: Retz.Google Scholar
  11. Butterworth, B., Reeve, R., & Reynolds, F. (2011). Using mental representations of space when words are unavailable: Studies of enumeration and arithmetic in indigenous Australia. Journal of Cross-Cultural Psychology, 42(4), 630–638.CrossRefGoogle Scholar
  12. Chemla, K., & Guo, S.C.(郭書春). (2004). Les Neuf Chapitres: Le Classique Mathématique de la chine Ancienne et Ses Commentaires. Paris: Dunod.Google Scholar
  13. D’Ambrosio, U. (2001). What is ethnomathematics, and how can it help children in schools? Teaching Children Mathematics,7(6), 308–310.Google Scholar
  14. Dehaene, S., & Brannon, E. M. (Eds.). (2011). Space, time, number in the brain: Searching for the foundations of mathematical thought. London: Elsevier.Google Scholar
  15. Elementary Mathematics Department. (2005). Mathematics teacher manual: Grade 1 (Vol. 1). Beijing: People Education Press. [in Chinese].Google Scholar
  16. Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4(2), 59–65.CrossRefGoogle Scholar
  17. González, S., Valverde, G., Roncagliolo, R., & Luna, E. (2015). Reporte final del Programa de Escuelas Efectivas PUCMM – MINERD- USAID. Santiago de los Caballeros: Pontificia Universidad Católica Madre y Maestra.Google Scholar
  18. Gorgorió, N., & Planas, N. (2001). Teaching mathematics in multilingual classrooms. Educational Studies in Mathematics, 47(1), 7–33.CrossRefGoogle Scholar
  19. Halliday, M. A. K., & Hasan, R. (1985). Language, context, and text: Aspects of language in a social-semiotic perspective. Oxford: Oxford University Press.Google Scholar
  20. Ifrah, G. (1985). From one to zero. A universal history of numbers (L. Bair, Trans.). New York: Viking Penguin Inc. (Original work published 1981.)Google Scholar
  21. Ifrah, G. (2001). The universal history of computing: From the abacus to the quantum computer. New York: Wiley.Google Scholar
  22. INVALSI. (2012). Quadri di Riferimento. Primo ciclo di istruzione. Prova di Matematica. Accessed 20 Jan 2016.
  23. Joseph, G.G. (2011). The crest of the peacock: Non-European roots of mathematics (3rd ed.). Princeton: Princeton University Press.Google Scholar
  24. Jullien, F. (1996). Si parler va sans dire: Du logos et d’autres ressources. Paris: Seuil.Google Scholar
  25. Lam, L., & Ang, T. (2004). Fleeting footsteps. Singapore: World Scientific Publishing.CrossRefGoogle Scholar
  26. Mathematics textbook developer group for elementary school. (2005). Mathematics. Beijing: People’s Education Press. [In Chinese].Google Scholar
  27. Menninger, K. (1969). Number words and number symbols: A cultural history of numbers. Cambridge, MA: The MIT Press. (Translated from the German edition of 1958).Google Scholar
  28. MIUR. (1985). Programmi della Scuola Elementare, D.P.R. 12 febbraio 1985, n 104. Accessed 20 Jan 2016.
  29. MIUR. (2012). Indicazioni nazionali per il curricolo per la scuola dell’infanzia e il primo ciclo dell’istruzione. Accessed 20 Jan 2016.
  30. MIUR-UMI. (2001). Matematica 2001. Accessed 20 Jan 2016.
  31. Miura, I. T., Okamoto, Y., Kim, C. C., Chang, C.-M., Steere, M., & Fayol, M. (1994). Comparisons of children’s cognitive representation of number: China, France, Japan, Korea, Sweden, and the United States. International Journal of Behavioral Development, 17(4), 401–411.CrossRefGoogle Scholar
  32. Monti, M. M., Parsons, L. M., & Osherson, D. N. (2012). Thought beyond language: Neural dissociation of algebra and natural language. London: Psychological Science.Google Scholar
  33. Poincaré, H. (2003). Science and method. (F. Maitland, Trans.). New York: Dover. (Original work published 1908.)Google Scholar
  34. Radford, L. (2014). On the role of representations and artefacts in knowing and learning. Educational Studies in Mathematics, 85(3), 405–422.CrossRefGoogle Scholar
  35. Rojas-Gamarra, M., & Stepanova, M. (2015). Sistema de numeración Inka en la Yupana y el Khipu. Revista Latinoamericana de Etnomatemática, 8(3), 46–68.Google Scholar
  36. Saxe, G. (2014). Cultural development of mathematical ideas: Papua New Guinea studies. Cambridge: Cambridge University Press.Google Scholar
  37. Schleppegrell, M. J. (2007). The linguistic challenges of mathematics teaching and learning: A research review. Reading & Writing Quarterly: Overcoming Learning Difficulties, 23(2), 139–159.CrossRefGoogle Scholar
  38. Selin, H., & D’Ambrosio, U. (2000). Mathematics across cultures: The history of non-western mathematics. Dordrecht: Springer.Google Scholar
  39. Sinclair, N., & Metzuyanim, E. (2014). Learning number with TouchCounts: The role of emotions and the body in mathematical communication. Technology, Knowledge and Learning, 19(1), 81–99.CrossRefGoogle Scholar
  40. Siu, M. K.(蕭文強). (2011). 1607, a year of (some) significance: Translation of the first European text in mathematics — Elements — Into Chinese. In Barbin, E., Kronfellner, M., & Tzanakis, C. (Eds.). History and epistemology in mathematics education (pp. 573–589). Vienna: Verlag Holzhausen.Google Scholar
  41. Siu, M. K. (蕭文強). (2015a). Tongwen Suanzhi (同文算指) and transmission of bisuan (筆算written calculation) in China: From an HPM (History and Pedagogy of Mathematics) viewpoint. Journal for History of Mathematics, 28(6), 311–320.CrossRefGoogle Scholar
  42. Sun, X. (2011). Variation problems and their roles in the topic of fraction division in Chinese mathematics textbook examples. Educational Studies in Mathematics, 76(1), 65–85.CrossRefGoogle Scholar
  43. Sun, X. (2013). The structures, goals and pedagogies of “variation problems” in the topic of addition and subtraction of 0–9 in Chinese textbooks and reference books. Proceedings of the Eighth Congress of European Research in Mathematics Education (CERME 8, WG 16), 2208–2218.Google Scholar
  44. Sun, X. (2016a).《螺旋變式—中國內地數學課程與教學之邏輯》 新加坡八方文化創作室. Spiral variation: A hidden theory to interpret the logic to design Chinese mathematics curriculum and instruction in mainland China. Singapore: World Scientific Publishing.Google Scholar
  45. Sun, X. (2016b). Uncovering Chinese Pedagogy: Spiral variation –the unspoken principle for algebra thinking to develop curriculum and instruction of “TWO BASICS”. Invited paper in 13th International Congress on Mathematical Education (ICME-13).Google Scholar
  46. Usiskin, Z. (1992). Thoughts of an ICME regular. For the Learning of Mathematics, 12(3), 19–20.Google Scholar
  47. Varley, R. A., Klessinger, N. J. C., Romanowsky, C. A. J., & Siegal, M. (2002). Agrammatic but numerate. Nature Reviews. Neuroscience, 3, 462–471.CrossRefGoogle Scholar
  48. Vergnaud, G. (1991). Langage et pensée dans l’apprentissage des mathématiques. Revue Française de Pédagogie, 96, 79–86.CrossRefGoogle Scholar
  49. Vergnaud, G. (1997). The nature of mathematical concepts. In T. Nunes & P. Bryant (Eds.), Learning and teaching mathematics: An international perspective (pp. 5–28). Hove: Psychology Press.Google Scholar
  50. Villavicencio Ubillús, M. (1990). La matemática en la educación bilingüe: el caso de Puno. Lima: Programa de Educación Bilingüe-Puno.Google Scholar
  51. Zaslavsky, C. (1973). Africa counts: Number and pattern in African culture. Chicago: Lawrence Hill Books.Google Scholar
  52. Zhang, D. (2006). The “two basics”: Mathematics teaching in mainland China. [in Chinese]. Shanghai: Shanghai Education Press.Google Scholar

Cited papers from Sun, X., Kaur, B., & Novotna, J. (Eds.). (2015). Conference proceedings of the ICMI study 23: Primary mathematics study on whole numbers. Retrieved February 10, 2016, from

  1. Bartolini Bussi, M. G. (2015). The number line: A ‘Western’ teaching aid (pp. 298–306).Google Scholar
  2. Mellone, M., & Ramploud, A. (2015). Additive structure: An educational experience of cultural transposition (pp. 567–574).Google Scholar
  3. Siu, M. K. (2015b). Pedagogical lessons from Tongwen Suanzhi (同文算指): Transmission of bisuan (筆算 written calculation) in China (pp. 132–9).Google Scholar
  4. Soury-Lavergne, S., & Maschietto, M. (2015). Number system and computation with a duo of artifacts: The pascaline and the e-pascaline (pp. 371–378).Google Scholar
  5. Sun, X. (2015). Chinese core tradition to whole number arithmetic (pp. 140–148).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.University of TurinTurinItaly
  2. 2.University Yahia Fares MedeaMedeaAlgeria
  3. 3.Department of Education and HumanitiesUniversity of Modena and Reggio EmiliaModenaItaly
  4. 4.Pontificia Universidad Católica Madre y MestraSantiago de los CaballerosRepública Dominicana
  5. 5.Faculty of EducationUniversity of MacauMacaoChina
  6. 6.University of Hong KongPokfulamChina

Personalised recommendations