Digital Image Correlation Study of the Deformation and Functioning of the Human Heart during Open-Heart Surgery

  • Ayat SoltaniEmail author
  • S. Curtze
  • J. Lahti
  • K. Järvelä
  • J. Laurikka
  • M. Hokka
  • V.-T. Kuokkala
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


Currently, ultrasound technology is routinely used for monitoring of the left side of the human heart during open-heart surgery. However, this method shows shortcomings in providing accurate information of the right ventricle and atrium. The aim of this paper is to demonstrate how Digital Image Correlation (DIC) can be used to monitor the functioning of the heart during open-heart surgery and potentially overcome some of the shortcomings of ultrasound methods. Being a contact-free method is a major asset from a practical implementation perspective of DIC. In this paper, we present the methodology of the experiment and some preliminary results of a study in which a DIC system was installed in an operating room and image sequences of the heart were taken at three stages of the surgery. We present a procedure for obtaining DIC measurements in this challenging setting, discuss how the data was extracted as well as how the measured values changed during the operation in the context of the surgical stages and interventions performed.


Open heart surgery DIC Deformation Motion Biomaterial characterization 


  1. 1.
    La Gerche, A., Robberecht, C., Kuiperi, C., Nuyens, D., Willems, R., de Ravel, T., Matthijs, G., Heidbüchel, H.: Lower than expected desmosomal gene mutation prevalence in endurance athletes with complex ventricular arrhythmias of right ventricular origin. Heart. 96(16), 1268–1274 (2010)CrossRefGoogle Scholar
  2. 2.
    Teske, A., Robberecht, C., Kuiperi, C., Nuyens, D., Willems, R., de Ravel, T., Matthijs, G., Heidbüchel, H.: Echocardiographic tissue deformation imaging quantifies abnormal regional right ventricular function in arrhythmogenic right ventricular dysplasia/cardiomyopathy. J. Am. Soc. Echocardiogr. 22, 920–927 (2009)CrossRefGoogle Scholar
  3. 3.
    Sutherland, G., Kukulski, T., Uwe Voight, J., Dhooge, J.: Tissue Doppler echocardiography. Echocardiography. 16, 509–520 (1999)CrossRefGoogle Scholar
  4. 4.
    Planca, M., Tozzi, G., Cristofolini, L.: The use of digital image correlation in the biomechanical area: a review. Int. Biomech. 3(1), 1–21 (2015)CrossRefGoogle Scholar
  5. 5.
    Lionello, G., Cristofolini, L.: A practical approach to optimizing the preparation of speckle patterns for digital-image correlation. Meas. Sci. Technol. 25(10), 107001 (2014)CrossRefGoogle Scholar
  6. 6.
    Barranger, Y., Doumalin, P., Dupré, J., Germaneau, A.: Digital image correlation accuracy: influence of kind of speckle and recording setup. In Germaneau (2010)Google Scholar
  7. 7.
    Hijazi, A., Friedl, A., Kahler, C.: Influence of Camera’s optical Axis non-perpendicularity on measurement accuracy of two-dimensional digital image correlation. Jordan J. Mech. Indust. Eng. 5(4), 373–382 (2011)Google Scholar
  8. 8.
    Hiddadi, H., Belhabib, S.: Use of rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique. Opt. Lasers Eng. 46(2), 185–196 (2008)CrossRefGoogle Scholar
  9. 9.
    Hokka, M., Mirow, N., Vogt, N. and Kuokkala, V.-T.: DIC Measurements of the Human Heart during Cardiopulmonary Bypass Surgery. In: SEM annual conference, Costa Mesa (2015)Google Scholar
  10. 10.
    Hokka, M., Mirow, N., Nagel, H., Irqsusi, M., Vogt, S., Kuokkala, V.: In-vivo deformation measurements of the human heart by 3D digital image correlation. J. Biomech. 48, 2217–2220 (2015)CrossRefGoogle Scholar
  11. 11.
    Mirow, N., Hokka, M., Nagel, H., Vogt, S., Irqsusi, M., Kuokkala, V.-T., Moosdorf, R.: Intraoperative stereoscopic strain analysis of right ventricular wall-motion changes after coronary bypass surgery. Biomech. Eng. 3, (2015)Google Scholar
  12. 12.
    Hokka, M., Mirow, N., Nagel, H., Vogt, S., Kuokkala, V.-T.: DIC measurements of the human heart during cardiopulmonary bypass surgery. Mech. Biol. Syst. Mat. 6, 51–59 (2016)Google Scholar
  13. 13.
    Dandel, M., Lehmkuhl, H., Knosalla, C., Suramelashvili, N., Hetzer, R.: Strain and strain rate imaging by echocardiography–basic concepts and clinical applicability. Curr. Cardiol. Rev. 5, 133–148 (2009)CrossRefGoogle Scholar
  14. 14.
    Lewis, R., Sandler, H.: Relationship between changes in left ventricular dimensions and the ejection fraction in man. Circulation. 44(4), 548–557 (1971)CrossRefGoogle Scholar
  15. 15.
    Denault, A.Y., Couture, P., Beaulieu, Y., Haddad, F., Deschamps, A., Nozza, A., Pagé, P., Tardif, J.-C., Lambert, J.: Ventricular depression after cardiopulmonary bypass for Valvular surgery. J. Cardiothorac. Vasc. Anesth. 29(4), 836–844 (2015)CrossRefGoogle Scholar
  16. 16.
    Voelkel, N.F., Quaife, R.A., Leinwand, L.A., Barst, R.J., McGoon, M.D., Meldrum, D.R., Dupuis, J., Long, C.S., Rubin, L.J., Smart, F.W., Suzuki, Y.J., Gladwin, M., Denholm, E.M., Gail, D.B.: Right ventricular function and failure. Circulation. 114, 1883–1891 (2006)CrossRefGoogle Scholar
  17. 17.
    Marwick, T.: Measurement of strain and strain rate by echocardiography: ready for prime time? J. Am. Coll. Cardiol. 7, 1313–1327 (2006)CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2018

Authors and Affiliations

  • Ayat Soltani
    • 1
    Email author
  • S. Curtze
    • 1
  • J. Lahti
    • 2
  • K. Järvelä
    • 2
  • J. Laurikka
    • 2
  • M. Hokka
    • 1
  • V.-T. Kuokkala
    • 1
  1. 1.Tampere University of Technology, Laboratory of Materials ScienceTampereFinland
  2. 2.Tampere University Hospital Heart Center, Tampere UniversityTampereFinland

Personalised recommendations