Advertisement

Dry Adhesion of Artificial Gecko Setae Fabricated via Direct Laser Lithography

  • Omar Tricinci
  • Eric V. Eason
  • Carlo Filippeschi
  • Alessio Mondini
  • Barbara Mazzolai
  • Nicola M. Pugno
  • Mark R. Cutkosky
  • Francesco Greco
  • Virgilio Mattoli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)

Abstract

Biomimetics has introduced a new paradigm: by constructing structures with engineered materials and geometries, innovative devices may be fabricated. According to this paradigm, both shape and material properties are equally important to determine functional performance. This idea has been applied also in the field of the microfabrication of smart surfaces, exploiting properties already worked out by nature, like in the case of self-cleaning, drag reduction, structural coloration, and dry adhesion. Regarding dry adhesive properties, geckos represent a good example from which we take inspiration, since they have the extraordinary ability to climb almost every type of surface, even smooth ones, thanks to the hierarchical conformation of the fibrillary setae in their toe pads. Due to this design, they can increase the area of contact with a surface and thus the amount of attractive van der Waals forces. While reproducing with artificial materials the same functional morphology of gecko’s pads is typically not achievable with traditional microfabrication techniques, recently Direct Laser Litography offered new opportunities to fabrication of complex three-dimensional structures in the microscale with nanometric resolution. Using direct laser lithography, we have fabricated artificial gecko setae, reproducing with unprecedented faithfulness the natural morphology in the same dimensional scale. Adhesion force of artificial setae toward different surfaces have been tested in dry condition by means of a dedicated setup and compared with natural ones.

Keywords

Biomimetics Direct laser lithography Gecko Dry adhesion 

References

  1. 1.
    Bhushan, B.: Biomimetics: lessons from nature–an overview. Philos. Trans. R Soc. Math. Phys. Eng. Sci. 367, 1445–1486 (2009). doi: 10.1098/rsta.2009.0011 CrossRefGoogle Scholar
  2. 2.
    Kamperman, M., Kroner, E., del Campo, A., McMeeking, R.M., Arzt, E.: Functional adhesive surfaces with “Gecko” effect: The concept of contact splitting. Adv. Eng. Mater. 12, 335–348 (2010). doi: 10.1002/adem.201000104 CrossRefGoogle Scholar
  3. 3.
    Lee, J., Bush, B., Maboudian, R., Fearing, R.S.: Gecko-inspired combined lamellar and nanofibrillar array for adhesion on nonplanar surface. Langmuir 25, 12449–12453 (2009). doi: 10.1021/la9029672 CrossRefGoogle Scholar
  4. 4.
    Kwak, M.K., Pang, C., Jeong, H.-E., Kim, H.-N., Yoon, H., Jung, H.-S., Suh, K.-Y.: Towards the next level of bioinspired dry adhesives: new designs and applications. Adv. Funct. Mater. 21, 3606–3616 (2011). doi: 10.1002/adfm.201100982 CrossRefGoogle Scholar
  5. 5.
    Hawkes, E.W., Eason, E.V., Asbeck, A.T., Cutkosky, M.R.: The gecko’s toe: scaling directional adhesives for climbing applications. IEEE/ASME Trans. Mechatron. 18, 518–526 (2013). doi: 10.1109/TMECH.2012.2209672 CrossRefGoogle Scholar
  6. 6.
    Autumn, K., Sitti, M., Liang, Y.A., Peattie, A.M., Hansen, W.R., Sponberg, S., Kenny, T.W., Fearing, R., Israelachvili, J.N., Full, R.J.: Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. 99, 12252–12256 (2002). doi: 10.1073/pnas.192252799 CrossRefGoogle Scholar
  7. 7.
    Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., Fearing, R., Full, R.J.: Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000). doi: 10.1038/35015073 CrossRefGoogle Scholar
  8. 8.
    Tricinci, O., Terencio, T., Mazzolai, B., Pugno, N.M., Greco, F., Mattoli, V.: 3D micropatterned surface inspired by salvinia molesta via direct laser lithography. ACS Appl. Mater. Interfaces 7, 25560–25567 (2015). doi: 10.1021/acsami.5b07722 CrossRefGoogle Scholar
  9. 9.
    Marino, A., Filippeschi, C., Mattoli, V., Mazzolai, B., Ciofani, G.: Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization. Nanoscale 7, 2841–2850 (2015). doi: 10.1039/C4NR06500J CrossRefGoogle Scholar
  10. 10.
    Israelachvili, J.N.: Intermolecular and Surface Forces: Revised, 3rd edn. Academic Press, Cambridge (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Omar Tricinci
    • 1
  • Eric V. Eason
    • 2
    • 3
  • Carlo Filippeschi
    • 1
  • Alessio Mondini
    • 1
  • Barbara Mazzolai
    • 1
  • Nicola M. Pugno
    • 4
    • 5
    • 6
  • Mark R. Cutkosky
    • 3
  • Francesco Greco
    • 1
    • 7
  • Virgilio Mattoli
    • 1
  1. 1.Center for Micro-BioRobotics @SSSAIstituto Italiano di TecnologiaPontederaItaly
  2. 2.Lockheed Martin Advanced Technology CenterPalo AltoUSA
  3. 3.Biomimetics and Dexterous Manipulation Laboratory, Department of Mechanical Engineering, Center for Design ResearchStanford UniversityStanfordUSA
  4. 4.Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil Environmental and Mechanical EngineeringUniversity of TrentoTrentoItaly
  5. 5.School of Engineering and Materials ScienceQueen Mary University of LondonLondonUK
  6. 6.Italian Space AgencyRomeItaly
  7. 7.Department of Life Science and Medical Bio-Science, Graduate School of Advanced Science and EngineeringWaseda UniversityTokyoJapan

Personalised recommendations