Bioinspired Magnetic Navigation Using Magnetic Signatures as Waypoints

  • Brian K. TaylorEmail author
  • Grant Huang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)


Diverse taxa use Earth’s magnetic field in conjunction with other sensor modes to accomplish navigation tasks that range from local homing to long-distance migration across continents and ocean basins. However, despite extensive research, animal magnetoreception remains a poorly understood, and active research area. Concurrently, Earth’s magnetic field offers a signal that engineered systems can leverage for navigation and localization in environments where man-made systems such as GPS are either unavailable or unreliable. Using a proxy for Earth’s magnetic field, and inspired by migratory animal behavior, this work implements behavioral strategies to navigate through a series of magnetic waypoints. The strategies are able to navigate through a closed set of points, in some cases running through several “laps”. Successful trials were observed in both a range of environmental parameters, and varying levels of sensor noise. The study explores several of these parameter combinations in simulation, and presents preliminary results from a version of the strategy implemented on a mobile robot platform. Alongside success, limitations of the simulated and hardware algorithms are discussed. The results illustrate the feasibility of either an animal, or engineered platform to use a set of waypoints based on the magnetic field to navigate. Additionally, the work presents an engineering/quantitative biology approach that can garner insight into animal behavior while simultaneously illuminating paths of development for engineered algorithms and systems.



We thank Dr. Kevin Brink (AFRL/RWWI) for the use of his robotics laboratory for the hardware portion of this study.


  1. 1.
    Shockley, J.A., Raquet, J.F.: Navigation of ground vehicles using magnetic field variations. Navigation 61, 237–252 (2014)CrossRefGoogle Scholar
  2. 2.
    Canciani, A., Raquet, J.F.: Absolute positioning using the earth’s magnetic anomaly field. Navigation 63, 111–126 (2016)CrossRefGoogle Scholar
  3. 3.
    Johnsen, S., Lohmann, K.J.: The physics and neurobiology of magnetoreception. Nat. Rev. Neurosci. 6, 703–712 (2005)CrossRefGoogle Scholar
  4. 4.
    Johnsen, S., Lohmann, K.J.: Magnetoreception in animals. Phys. Today 61, 29–35 (2008)CrossRefGoogle Scholar
  5. 5.
    Wiltschko, R., Wiltschko, W.: Magnetic Orientation in Animals. Springer, Heidelberg (1995)CrossRefzbMATHGoogle Scholar
  6. 6.
    Knecht, D.J., Shuman, B.M.: The geomagnetic field. In: Jursa, A. (ed.) Handbook of Geophysics and the Space Environment. Air Force Geophysics Laboratory (1985)Google Scholar
  7. 7.
    Wajnberg, E., Acosta-Avalos, D., Alves, O.C., de Oliveria, J.F., Srygley, R.B., Esquivel, D.M.S.: Magnetoreception in eusocial insects: an update. J. R. Soc. Interface 7, S207–S225 (2010)CrossRefGoogle Scholar
  8. 8.
    Lohmann, K.J., Lohmann, C.M.F., Putman, N.F.: Magnetic maps in animals: nature’s GPS. J. Exp. Biol. 210, 3697–3705 (2007)CrossRefGoogle Scholar
  9. 9.
    Taylor, B.K., Johnsen, S., Lohmann, K.J.: Detection of magnetic field properties using distributed sensing: a computational neuroscience approach. Bioinspiration & Biomimetics 12(3), 036013 (2017)CrossRefGoogle Scholar
  10. 10.
    Walker, M.: On a wing and a vector: a model for magnetic navigation by homing pigeons. J. Theor. Biol. 192, 341–349 (1998)CrossRefGoogle Scholar
  11. 11.
    Stoddard, P.K., Mardsen, E.J., Williams, T.C.: Computer simulation of autumnal bird migration over the western north Atlantic. Animal Behav. 31, 173–180 (1983)CrossRefGoogle Scholar
  12. 12.
    Lohmann, K.J., Hester, J.T., Lohmann, C.M.F.: Long-distance navigation in sea turtles. Ethol. Ecol. Evol. 11, 1–23 (1999)CrossRefGoogle Scholar
  13. 13.
    Goyret, J., Markwell, P.M., Raguso, R.A.: The effect of decoupling olfactory and visual stimuli on the foraging behavior of Manduca sexta. J. Exp. Biol. 210, 1398–1405 (2007)CrossRefGoogle Scholar
  14. 14.
    Willis, M.A., Avondet, J.L., Finnell, A.S.: Effects of altering flow and odor information on plume tracking behavior in walking cockroaches, peripleneta americana (L.). J. Exp. Biol. 211, 2317–2326 (2008)CrossRefGoogle Scholar
  15. 15.
    Reppert, S.M., Gegear, R.J., Merlin, C.: Navigational mechanisms of migrating monarch butterflies. Trends Neruosci. 33, 399–406 (2008)CrossRefGoogle Scholar
  16. 16.
    Baker, T.C., Kuenen, L.P.S.: Pheromone source location by flying moths: a supplementary non-anemotactic mechanism. Science 216, 424–427 (1982)CrossRefGoogle Scholar
  17. 17.
    Jensen, K.K.: Light-dependent orientation responses in animals can be explained by a model of compass cue integration. J. Theor. Biol. 262, 129–141 (2010)CrossRefGoogle Scholar
  18. 18.
    Lohmann, K.J., Putman, N.F., Lohmann, C.M.F.: The magnetic map of hatchling loggerhead sea turtles. Curr. Opin. Neurobiol. 22, 336–342 (2012)CrossRefGoogle Scholar
  19. 19.
    Luschi, P., et al.: The navigational feats of green sea turtles migrating from Ascension Island investigated by satellite telemetry. Proc. R. Soc. Lond. B Biol. Sci. 265(1412), 2279–2284 (1998)CrossRefGoogle Scholar
  20. 20.
    Luschi, P., et al.: Marine turtles use geomagnetic cues during open-sea homing. Curr. Biol. 17(2), 126–133 (2007)CrossRefGoogle Scholar
  21. 21.
    Brothers, J.R., Lohmann, K.J.: Evidence for geomagnetic imprinting and magnetic navigation in the natal homing of sea turtles. Curr. Biol. 25, 392–396 (2015)CrossRefGoogle Scholar
  22. 22.
    Mouritsen, H.: Spatiotemporal orientation strategies of long-distance migrants. In: Berthold, P., Gwinner, E., Sonnenschein, E. (eds.) Avian Migration, pp. 493–513. Springer, Berlin (2003)CrossRefGoogle Scholar
  23. 23.
    Painter, K.J., Hillen, T.: Individual and continuum models for homing in flowing environments. J. Royal Soc. Interface 12 (2015)Google Scholar
  24. 24.
    Putman, N.F., Verley, P., Shay, T.J., Lohmann, K.J.: Simulating transoceanic migrations of young loggerhead sea turtles: merging magnetic navigation behavior with an ocean circulation model. J. Exp. Biol. 215, 1863–1870 (2012)CrossRefGoogle Scholar
  25. 25.
    Putman, N.F., Verley, P., Endres, C.S., Lohmann, K.J.: Magnetic navigation behavior and the oceanic ecology of young loggerhead sea turtles. J. Exp. Biol. 218, 1044–1050 (2015)CrossRefGoogle Scholar
  26. 26.
    Putman, N.F.: Inherited magnetic maps in salmon and the role of geomagnetic change. Integrat. Comparat. Biol. 55, 396–405 (2015)CrossRefGoogle Scholar
  27. 27.
    Servedio et al.: Not just a theory - the utility of mathematical models in evolutionary biology. PLoS Biol. 12 (2014). doi: 10.1371/journal.pbio.1002017
  28. 28.
    Rutkowski, A.J.: A Biologically-inspired sensor fusion approach to tracking a wind-borne odor in three dimensions. PhD Dissertation, Case Western Reserve University (2008)Google Scholar
  29. 29.
    Rutter, B.L., Taylor, B.K., Bender, J.A., Blűmel, M.A., Lewinger, W.A., Ritzmann, R.E., Quinn, R.D.: Descending commands to an insect leg controller network cause smooth behavioral transitions. In: International Conference on Intelligent Robots and Systems, pp. 215–220 (2011)Google Scholar
  30. 30.
    Rutter, B.L., Taylor, B.K., Bender, J.A., Blűmel, M.A., Lewinger, W.A., Ritzmann, R.E., Quinn, R.D.: Sensory coupled action switching modules (SCASM) for modeling and synthesis of biologically inspired coordination. In: International Conference on Climbing and Walking Robots (2011)Google Scholar
  31. 31.
    Webb, B.: What does robotics offer animal behaviour? Anim. Behav. 60, 545–558 (2000)CrossRefGoogle Scholar
  32. 32.
    Talley, J.L.: A comparison of flying Manduca sexta and walking Periplaneta americana male tracking behavior to female sex pheromones in different flow environments. Ph.D Dissertation, Case Western Reserve University (2010)Google Scholar
  33. 33.
    Grasso, F.W., Consi, T.R., Mountain, D.C., Atema, J.: Biomimetic robot lobster performs chemoo-orientation in turbulence using an pair of spatially separated sensors: progress and challenges. Robot. Auton. Syst. 30, 115–131 (2000)CrossRefGoogle Scholar
  34. 34.
    Grasso, F.W., Atema, J.: Integration of flow and chemical sensing for guidance of autonomous marine robots in turbulent flows. Environ. Fluid Mech. 2, 95–114 (2002)CrossRefGoogle Scholar
  35. 35.
    Putman, N.F., Endres, C.S., Lohmann, C.M.F., Lohmann, K.J.: Longitude perception and bicoordinate magnetic maps in sea turtles. Curr. Biol. 21, 463–466 (2011)CrossRefGoogle Scholar
  36. 36.
    Postlethwaite, C.M., Walker, M.M.: A gemoetric model for initial orientation errors in pigeon navigation. J. Theor. Biol. 269, 273–279 (2011)CrossRefzbMATHGoogle Scholar
  37. 37.
    Benhamou, S.: Bicoordinate navigation based on non-orthogonal gradient fields. J. Theor. Biol. 225(2), 235–239 (2003)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Benhamou, S.: How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension? J. Theor. Biol. 229(2), 209–220 (2004)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Huang, G., Taylor, B.K., Brink, K.M., Miller, M.M.: Engineered and bioinspired magnetic navigation, Institute of Navigation Pacific Positioning, Navigation, and Timing Meeting (2017)Google Scholar
  40. 40.
  41. 41.
    Anderson, J.D.: Fundamentals of Aerodynamics, 3rd edn. McGraw-Hill, New York (2001)Google Scholar
  42. 42.
    Dey, S.: Fluvial Hydrodynamics. Springer, Berlin (2014)CrossRefGoogle Scholar
  43. 43.
    Endres, C.S., Putman, N.F., Ernst, D.A., Kurth, J.A., Lohmann, C.M.F., Lohmann, K.J.: Modeling dual use of geomagnetic and chemical cues in island-finding. Frontiers Behav. Neurosci. 10 (2001)Google Scholar
  44. 44.
    Bingman, V.P., Cheng, K.: Mechanisms of animal global navigation: comparative perspectives and enduring challenges. Ethol. Ecol. Evol. 17, 295–318 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Air Force Research LaboratoryEglin AFBUSA
  2. 2.University of FloridaShalimarUSA

Personalised recommendations