Consciousness as an Evolutionary Game-Theoretic Strategy

  • Xerxes D. Arsiwalla
  • Ivan Herreros
  • Clement Moulin-Frier
  • Paul Verschure
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)

Abstract

The aim of this article is to highlight the role of consciousness as a survival strategy in a complex multi-agent social environment. Clinical approaches to investigating consciousness usually center around cognitive awareness and arousal. An evolutionary approach to the problem offers a complimentary perspective demonstrating how social games trigger a cognitive arms-race among interacting goal-oriented agents possibly leading to consciousness. We begin our discussion declaring the functions that consciousness serves for goal-oriented agents. From a functional standpoint, consciousness can be interpreted as an evolutionary game-theoretic strategy. To illustrate this, we formalize the Lotka-Volterra population dynamics to a multi-agent system with cooperation and competition. We argue that for small population sizes, supervised learning strategies using behavioral feedback enable individuals to increase their fitness. In larger populations, learning using adaptive schemes are more efficient. However, when the network of social interactions becomes sufficiently complex, including the prevalence of hidden states of other agents that cannot be accessed, then all aforementioned optimization schemes are rendered computationally infeasible. We propose that that is when the mechanisms of consciousness become relevant as an alternative strategy to make predictions about the world by decoding psychological states of other agents. We suggest one specific realization of this strategy: projecting self onto others.

Keywords

Conscious agents Evolutionary games Complex systems Social interactions 

References

  1. 1.
    Arsiwalla, X.D., Verschure, P.F.M.J.: Integrated information for large complex networks. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2013)Google Scholar
  2. 2.
    Arsiwalla, X.D., Herreros, I., Moulin-Frier, C., Sanchez, M., Verschure, P.F.: Is Consciousness a Control Process? pp. 233–238. IOS Press, Amsterdam (2016). http://dx.doi.org/10.3233/978-1-61499-696-5-233
  3. 3.
    Arsiwalla, X.D., Herreros, I., Verschure, P.: On Three Categories of Conscious Machines, pp. 389–392. Springer International Publishing, Cham, Switzerland (2016). http://dx.doi.org/10.1007/978-3-319-42417-0_35
  4. 4.
    Arsiwalla, X.D., Verschure, P.: Computing information integration in brain networks. In: Wierzbicki, A., Brandes, U., Schweitzer, F., Pedreschi, D. (eds.) NetSci-X 2016. LNCS, vol. 9564, pp. 136–146. Springer, Cham (2016). doi:10.1007/978-3-319-28361-6_11 CrossRefGoogle Scholar
  5. 5.
    Arsiwalla, X.D., Verschure, P.F.: The global dynamical complexity of the human brain network. Appl. Netw. Sci. 1(1), 16 (2016)CrossRefGoogle Scholar
  6. 6.
    Hofbauer, J., Huttegger, S.M.: Feasibility of communication in binary signaling games. J. Theor. Biol. 254(4), 843–849 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Laureys, S., Owen, A.M., Schiff, N.D.: Brain function in coma, vegetative state, and related disorders. Lancet Neurolog. 3(9), 537–546 (2004)CrossRefGoogle Scholar
  8. 8.
    Moulin-Frier, C., Puigbò, J.Y., Arsiwalla, X.D., Sanchez-Fibla, M., Verschure, P.F.: Embodied artificial intelligence through distributed adaptive control: An integrated framework. arXiv preprint (2017). arXiv:1704.01407
  9. 9.
    Steels, L.: Evolving grounded communication for robots. Trends cogn. Sci. 7(7), 308–312 (2003)CrossRefGoogle Scholar
  10. 10.
    Verschure, P.F.: Synthetic consciousness: the distributed adaptive control perspective. Phil. Trans. R. Soc. B 371(1701), 20150448 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Xerxes D. Arsiwalla
    • 1
  • Ivan Herreros
    • 1
  • Clement Moulin-Frier
    • 1
  • Paul Verschure
    • 1
    • 2
  1. 1.Synthetic Perceptive Emotive and Cognitive Systems (SPECS) Lab, Center of Autonomous Systems and NeuroroboticsUniversitat Pompeu FabraBarcelonaSpain
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations