EvoBot: Towards a Robot-Chemostat for Culturing and Maintaining Microbial Fuel Cells (MFCs)

  • Pavlina Theodosiou
  • Andres Faina
  • Farzad Nejatimoharrami
  • Kasper Stoy
  • John Greenman
  • Chris Melhuish
  • Ioannis Ieropoulos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)

Abstract

In this paper we present EvoBot, a RepRap open-source 3D-printer modified to operate like a robot for culturing and maintaining Microbial Fuel Cells (MFCs). EvoBot is a modular liquid handling robot that has been adapted to host MFCs in its experimental layer, gather data from the MFCs and react on the set thresholds based on a feedback loop. This type of robot-MFC interaction, based on the feedback loop mechanism, will enable us to study further the adaptability and stability of these systems. To date, EvoBot has automated the nurturing process of MFCs with the aim of controlling liquid delivery, which is akin to a chemostat. The chemostat is a well-known microbiology method for culturing bacterial cells under controlled conditions with continuous nutrient supply. EvoBot is perhaps the first pioneering attempt at functionalizing the 3D printing technology by combining it with the chemostat methods. In this paper, we will explore the experiments that EvoBot has carried out so far and how the platform has been optimised over the past two years.

Keywords

EvoBot Microbial Fuel Cells 3D-printer Cathode Rep-Rap 

References

  1. 1.
    Rosenfeld, L.: A golden age of clinical chemistry: 1948–1960. Clin. Chem. 46, 1705–1714 (2000)Google Scholar
  2. 2.
    Bogue, R.: Robots in the laboratory: a review of applications. Ind. Robot Int. J. 39, 113–119 (2011). doi:10.1108/01439911111106327 CrossRefGoogle Scholar
  3. 3.
    Wilkinson, S.: “Gastrobots’’—benefits and challenges of microbial fuel cells in foodpowered robot applications. Auton. Robots 9, 99–111 (2000). doi:10.1023/A:1008984516499 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ieropoulos, I., Greenman, J., Melhuish, C.: Imitating metabolism: energy autonomy in biologically inspired robots. In: Second International Symposium on Imitation of Animals and Artifacts, AISB 2003, Aberystwyth, Wales, pp. 191–194 (2003)Google Scholar
  5. 5.
    Ieropoulos, I., Melhuish, C., Greenman, J., Horsfield, I.: EcoBot-II: an artificial agent with a natural metabolism. Int. J. Adv. Robot Syst. 2, 295–300 (2005). doi:10.5772/5777 CrossRefGoogle Scholar
  6. 6.
    Ieropoulos, I., Greenman, J., Melhuish, C., Horsfield, I.: EcoBot-III: a robot with guts. In: 12th International Conference on the Synthesis and Simulation of Living Systems, pp. 733–740 (2010)Google Scholar
  7. 7.
    Rossiter, J., Philamore, H., Stinchcombe, A., Ieropoulos, I.: Row-bot: an energetically autonomous artificial water boatman. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3888–3893 (2015)Google Scholar
  8. 8.
    Melhuish, C., Ieropoulos, I., Greenman, J., Horsfield, I.: Energetically autonomous robots: food for thought. Auton. Robot. 21, 187–198 (2006). doi:10.1007/s10514-006-6574-5 CrossRefGoogle Scholar
  9. 9.
    Ieropoulos, I., Ledezma, P., Stinchcombe, A., Papaharalabos, G., Melhuish, C., Greenman, J.: Waste to real energy: the first MFC powered mobile phone. Phys. Chem. Chem. Phys. 15, 15312–15316 (2013). doi:10.1039/c3cp52889h CrossRefGoogle Scholar
  10. 10.
    Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., Oh, S.-E.: Microbial fuel cell as new technology for bioelectricity generation: a review. Alex. Eng. J. 54, 745–756 (2015). doi:10.1016/j.aej.2015.03.031 CrossRefGoogle Scholar
  11. 11.
    La, M.J.: Technique de culture continue. Theorie et applications. Ann Inst Pasteur (Paris) 79, 390–410 (1950)Google Scholar
  12. 12.
    Ziv, N., Brandt, N.J., Gresham, D.: The use of chemostats in microbial systems biology. J. Vis. Exp. 1–10 (2013). doi:10.3791/50168
  13. 13.
    Faíña, A., Nejatimoharrami, F., Stoy, K., Theodosiou, P., Taylor, B., Ieropoulos, I., EvoBot: An open-source, modular liquid handling robot for nurturing microbial fuel cells. In: Proceedings of the Artificial Life Conference 2016, pp. 626–633 (2016)Google Scholar
  14. 14.
    Nejatimoharrami, F., Faíña, A., Cejkova, J., Hanczyc, M.M., Stoy, K.: Robotic automation to augment quality of artificial chemical life experiments. In: Proceedings of the Artificial Life Conference 2016, vol. 1, pp. 634–635 (2016)Google Scholar
  15. 15.
    Ieropoulos, I., Theodosiou, P., Taylor, B., Greenman, J., Melhuish, C.: Gelatin as a promising printable feedstock for microbial fuel cells (MFC). Int. J. Hydrog. Energy 42, 1783–1790 (2017). doi:10.1016/j.ijhydene.2016.11.083 CrossRefGoogle Scholar
  16. 16.
    Greenman, J., Ieropoulos, I., Melhuish, C.: Microbial fuel cells – scalability and their use in robotics. Appl. Electrochem. Nanotechnol. Biol. Med. I 239–290 (2011). doi:10.1007/978-1-4614-0347-0_3

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pavlina Theodosiou
    • 1
  • Andres Faina
    • 2
  • Farzad Nejatimoharrami
    • 2
  • Kasper Stoy
    • 2
  • John Greenman
    • 3
  • Chris Melhuish
    • 4
  • Ioannis Ieropoulos
    • 1
  1. 1.Bristol BioEnergy CentreBristol Robotics LaboratoryBristolUK
  2. 2.Robot, Evolution, and Art Lab (REAL)IT University of CopenhagenCopenhagenDenmark
  3. 3.Faculty of Health and Applied SciencesUniversity of the West of EnglandBristolUK
  4. 4.Bristol Robotics LaboratoryBristolUK

Personalised recommendations