Exploiting Morphology of a Soft Manipulator for Assistive Tasks

  • Mariangela MantiEmail author
  • Thomas George Thuruthel
  • Francesco Paolo Falotico
  • Andrea Pratesi
  • Egidio Falotico
  • Matteo Cianchetti
  • Cecilia Laschi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)


The idea of using embodied intelligence over traditional well-structured design and control formulations has given rise to simple yet elegant applications in the form of soft grippers and compliant locomotion-based robots. Real-world applications of soft manipulators are however limited, largely due to their low accuracy and force transmission. Nonetheless, with the rise of robotic appliances in the field of human-robot interaction, their advantages could outweigh their control deficiencies. In this context, the embodied intelligence could play an important role in developing safe and robust controllers. In this paper, we present a three module soft manipulator to experimentally demonstrate how its morphological properties can be exploited through interactions with the external environment. In particular, we show how to improve the pose accuracy in an assistive task using a simple control algorithm. The soft manipulator takes advantage of its inherent compliance and the physical constraints of the external environment to accomplish a safe interactive task with the user. There exists a continuous and mutual adaptation between the soft-bodied system and the environment. This feature can be used in tasks where the environment is unstructured (e.g. specific body region), and the adaptability of the interaction is entirely dependent on the morphology and control of the system. Experimental results indicate that significant improvements in the tracking accuracy can be achieved by a simple yet appropriate environmental constraint.


Soft manipulator Embodied intelligence Morphological computation Human-robot interaction Assistive robots 



The authors would like to acknowledge the support by the European Commission through the I-SUPPORT project (#643666).

Supplementary material

Supplementary material 1 (WMV 50127 kb)


  1. 1.
    Laschi, C., Mazzolai, B., Cianchetti, M.: Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci. Rob. 1(1), eaah3690 (2016)CrossRefGoogle Scholar
  2. 2.
    Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)CrossRefGoogle Scholar
  3. 3.
    Pfeifer, R., Lungarella, M., Iida, F.: The challenges ahead for bio-inspired ‘soft’ robotics. Commun. ACM 55(11), 76–87 (2012)CrossRefGoogle Scholar
  4. 4.
    Cieslak, R., Morecki, A.: Elephant trunk type elastic manipulator-a tool for bulk and liquid materials transportation. Robotica 17(01), 11–16 (1999)CrossRefGoogle Scholar
  5. 5.
    Walker, I.D., Dawson, D.M., Flash, T., Grasso, F.W., Hanlon, R.T., Hochner, B., Kier, W.M., Pagano, C.C., Rahn, C.D., Zhang, Q.M.: Continuum robot arms inspired by cephalopods. In: Defense and Security, 27 May 2005, pp. 303–314. International Society for Optics and PhotonicsGoogle Scholar
  6. 6.
    Laschi, C., Mazzolai, B., Mattoli, V., Cianchetti, M., Dario, P.: Design of a biomimetic robotic octopus arm. Bioinspiration Biomim. 4(1), 015006 (2009)CrossRefGoogle Scholar
  7. 7.
    Cianchetti, M., Arienti, A., Follador, M., Mazzolai, B., Dario, P., Laschi, C.: Design concept and validation of a robotic arm inspired by the octopus. Mater. Sci. Eng., C 31(6), 1230–1239 (2011)CrossRefGoogle Scholar
  8. 8.
    Abidi, H., Cianchetti, M.: On intrinsic safety of soft robots. Front. Rob. AI 4, 5 (2017)Google Scholar
  9. 9.
    Laschi, C., Cianchetti, M.: Soft robotics: new perspectives for robot bodyware and control. Front. Bioeng. Biotechnol. 30(2), 3 (2014)Google Scholar
  10. 10.
    Immega, G., Antonelli, K.: The KSI tentacle manipulator. In: 1995 IEEE International Conference on Robotics and Automation, Proceedings, 21 May 1995, vol. 3, pp. 3149–3154. IEEEGoogle Scholar
  11. 11.
    McMahan, W., Jones, B.A., Walker, I.D.: Design and implementation of a multi-section continuum robot: air-octor. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2005, 2 Aug 2005, pp. 2578–2585. IEEEGoogle Scholar
  12. 12.
    Cianchetti, M., Calisti, M., Margheri, L., Kuba, M., Laschi, C.: Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot. Bioinspiration Biomim. 10(3), 035003 (2015)CrossRefGoogle Scholar
  13. 13.
    Shiva, A., Stilli, A., Noh, Y., Faragasso, A., De Falco, I., Gerboni, G., Cianchetti, M., Menciassi, A., Althoefer, K., Wurdemann, H.A.: Tendon-based stiffening for a pneumatically actuated soft manipulator. IEEE Rob. Autom. Lett. 1(2), 632–637 (2016)CrossRefGoogle Scholar
  14. 14.
    Kang, R., Guo, Y., Chen, L., Branson, D., Dai, J.: Design of a pneumatic muscle based continuum robot with embedded tendons. IEEE/ASME Trans. Mech. 22, 751–761 (2016)CrossRefGoogle Scholar
  15. 15.
    Manti, M., Pratesi, A., Falotico, E., Cianchetti, M., Laschi, C.: Soft assistive robot for personal care of elderly people. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), 26 June 2016, pp. 833–838. IEEEGoogle Scholar
  16. 16.
    Ansari, Y., Manti, M., Falotico, E., Mollard, Y., Cianchetti, M., Laschi, C.: Towards the development of a soft manipulator as an assistive robot for personal care of elderly people. Int. J. Adv. Rob. Syst. 14(2), 1729881416687132 (2017)Google Scholar
  17. 17.
    Thuruthel, T.G., Falotico, E., Cianchetti, M., Laschi, C.: Learning global inverse kinematics solutions for a continuum robot. In: Parenti-Castelli, V., Schiehlen, W. (eds.) ROMANSY 21 - Robot Design, Dynamics and Control. CICMS, vol. 569, pp. 47–54. Springer, Cham (2016). doi: 10.1007/978-3-319-33714-2_6 CrossRefGoogle Scholar
  18. 18.
    Thuruthel, T., Falotico, E., Cianchetti, M., Renda, F., Laschi, C.: Learning global inverse statics solution for a redundant soft robot. In: Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics, 29 July 2016, vol. 2, pp. 303–310 (2016)Google Scholar
  19. 19.
    Pfeifer, R., Gómez, G.: Morphological computation – connecting brain, body, and environment. In: Sendhoff, B., Körner, E., Sporns, O., Ritter, H., Doya, K. (eds.) Creating Brain-Like Intelligence. LNCS, vol. 5436, pp. 66–83. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00616-6_5 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mariangela Manti
    • 1
    Email author
  • Thomas George Thuruthel
    • 1
  • Francesco Paolo Falotico
    • 1
  • Andrea Pratesi
    • 1
  • Egidio Falotico
    • 1
  • Matteo Cianchetti
    • 1
  • Cecilia Laschi
    • 1
  1. 1.BioRobotics Institute of Scuola Superiore Sant’AnnaPisaItaly

Personalised recommendations