Automated Calibration of a Biomimetic Space-Dependent Model for Zebrafish and Robot Collective Behaviour in a Structured Environment

  • Leo CazenilleEmail author
  • Yohann Chemtob
  • Frank Bonnet
  • Alexey Gribovskiy
  • Francesco Mondada
  • Nicolas Bredeche
  • José Halloy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)


Bio-hybrid systems made of robots and animals can be useful tools both for biology and robotics. To socially integrate robots into animal groups the robots should behave in a biomimetic manner with close loop interactions between robots and animals. Behavioural zebrafish experiments show that their individual behaviours depend on social interactions producing collective behaviour and depend on their position in the environment. Based on those observations we build a multilevel model to describe the zebrafish collective behaviours in a structured environment. Here, we present this new model segmented in spatial zones that each corresponds to different behavioural patterns. We automatically fit the model parameters for each zone to experimental data using a multi-objective evolutionary algorithm. We then evaluate how the resulting calibrated model compares to the experimental data. The model is used to drive the behaviour of a robot that has to integrate socially in a group of zebrafish. We show experimentally that a biomimetic multilevel and context-dependent model allows good social integration of fish and robots in a structured environment.


Collective behaviour Model fitting Evolutionary algorithms Decision-making Multilevel model Zebrafish 



This work was funded by EU-ICT project ‘ASSISIbf’, no. 601074.


  1. 1.
    Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1769–1776. IEEE (2005)Google Scholar
  2. 2.
    Bonnet, F., Binder, S., de Oliveria, M., Halloy, J., Mondada, F.: A miniature mobile robot developed to be socially integrated with species of small fish. In: 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 747–752. IEEE (2014)Google Scholar
  3. 3.
    Bonnet, F., Cazenille, L., Gribovskiy, A., Halloy, J., Mondada, F.: Multi-robots control and tracking framework for bio-hybrid systems with closed-loop interaction. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE (Forthcoming)Google Scholar
  4. 4.
    Bonnet, F., Cazenille, L., Seguret, A., Gribovskiy, A., Collignon, B., Halloy, J., Mondada, F.: Design of a modular robotic system that mimics small fish locomotion and body movements for ethological studies. Int. J. Adv. Rob. Syst. 14(3), 1729881417706628 (2017)Google Scholar
  5. 5.
    Bonnet, F., Rétornaz, P., Halloy, J., Gribovskiy, A., Mondada, F.: Development of a mobile robot to study the collective behavior of zebrafish. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 437–442. IEEE (2012)Google Scholar
  6. 6.
    Botvinick, M.: Multilevel structure in behaviour and in the brain: a model of fuster’s hierarchy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362(1485), 1615–1626 (2007)CrossRefGoogle Scholar
  7. 7.
    Cazenille, L., Bredeche, N., Halloy, J.: Multi-objective optimization of multi-level models for controlling animal collective behavior with robots. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) Living Machines 2015. LNCS, vol. 9222, pp. 379–390. Springer, Cham (2015). doi: 10.1007/978-3-319-22979-9_38 CrossRefGoogle Scholar
  8. 8.
    Cazenille, L., Bredeche, N., Halloy, J.: Automated optimisation of multi-level models of collective behaviour in a mixed society of animals and robots. arXiv preprint arXiv:1602.05830 (2016)
  9. 9.
    Cazenille, L., Collignon, B., Bonnet, F., Gribovskiy, A., Mondada, F., Bredeche, N., Halloy, J.: How mimetic should a robotic fish be to socially integrate into zebrafish groups? Bioinspiration & Biomimetics (Forthcoming)Google Scholar
  10. 10.
    Collignon, B., Séguret, A., Halloy, J.: A stochastic vision-based model inspired by zebrafish collective behaviour in heterogeneous environments. R. Soc. Open Sci. 3(1), 150473 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Collignon, B., Séguret, A., Chemtob, Y., Cazenille, L., Halloy, J.: Collective departures in zebrafish: profiling the initiators. arXiv preprint arXiv:1701.03611 (2017)
  12. 12.
    Correll, N., Schwager, M., Rus, D.: Social control of herd animals by integration of artificially controlled congeners. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS, vol. 5040, pp. 437–446. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-69134-1_43 CrossRefGoogle Scholar
  13. 13.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  14. 14.
    Deza, M., Deza, E.: Dictionary of Distances. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  15. 15.
    Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tâche, F., Said, I., Durier, V., Canonge, S., Amé, J.: Social integration of robots into groups of cockroaches to control self-organized choices. Science 318(5853), 1155–1158 (2007)CrossRefGoogle Scholar
  16. 16.
    Knight, J.: Animal behaviour: when robots go wild. Nature 434(7036), 954–955 (2005)CrossRefGoogle Scholar
  17. 17.
    Li, W., Gauci, M., Gross, R.: Turing learning: a metric-free approach to inferring behavior and its application to swarms. arXiv preprint arXiv:1603.04904 (2016)
  18. 18.
    Lopez, U., Gautrais, J., Couzin, I.D., Theraulaz, G.: From behavioural analyses to models of collective motion in fish schools. Interface Focus 2(6), 693–707 (2012)CrossRefGoogle Scholar
  19. 19.
    Mondada, F., Halloy, J., Martinoli, A., Correll, N., Gribovskiy, A., Sempo, G., Siegwart, R., Deneubourg, J.: A general methodology for the control of mixed natural-artificial societies, Chap. 15. In: Kernbach, S. (ed.) Handbook of Collective Robotics: Fundamentals and Challenges, pp. 547–585. Pan Stanford (2013)Google Scholar
  20. 20.
    Mouret, J., Doncieux, S.: Encouraging behavioral diversity in evolutionary robotics: an empirical study. Evol. Comput. 20(1), 91–133 (2012)CrossRefGoogle Scholar
  21. 21.
    Patricelli, G.L.: Robotics in the study of animal behavior. In: Breed, M.D., Moore, J. (eds.) Encyclopedia of Animal Behavior, pp. 91–99. Greenwood Press Westport, CT (2010)Google Scholar
  22. 22.
    Pérez-Escudero, A., Vicente-Page, J., Hinz, R.C., Arganda, S., de Polavieja, G.G.: idTracker: tracking individuals in a group by automatic identification of unmarked animals. Nat. Methods 11(7), 743–748 (2014)CrossRefGoogle Scholar
  23. 23.
    Schmickl, T., Bogdan, S., Correia, L., Kernbach, S., Mondada, F., Bodi, M., Gribovskiy, A., Hahshold, S., Miklic, D., Szopek, M., Thenius, R., Halloy, J.: ASSISI: mixing animals with robots in a hybrid society. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 441–443. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39802-5_60 CrossRefGoogle Scholar
  24. 24.
    Séguret, A., Collignon, B., Cazenille, L., Chemtob, Y., Halloy, J.: Loose social organisation of abstrain zebrafish groups in a two-patch environment. arXiv preprint arXiv:1701.02572 (2017)
  25. 25.
    Sumpter, D.J., Mann, R.P., Perna, A.: The modelling cycle for collective animal behaviour. Interface Focus 2(6), 764–773 (2012)CrossRefGoogle Scholar
  26. 26.
    Vaughan, R., Sumpter, N., Henderson, J., Frost, A., Cameron, S.: Experiments in automatic flock control. Rob. Auton. Syst. 31(1), 109–117 (2000)CrossRefGoogle Scholar
  27. 27.
    Zabala, F., Polidoro, P., Robie, A., Branson, K., Perona, P., Dickinson, M.: A simple strategy for detecting moving objects during locomotion revealed by animal-robot interactions. Curr. Biol. 22(14), 1344–1350 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Leo Cazenille
    • 1
    • 2
    Email author
  • Yohann Chemtob
    • 1
  • Frank Bonnet
    • 3
  • Alexey Gribovskiy
    • 3
  • Francesco Mondada
    • 3
  • Nicolas Bredeche
    • 2
  • José Halloy
    • 1
  1. 1.Univ Paris Diderot, Sorbonne Paris Cité, LIED, UMR 8236ParisFrance
  2. 2.Sorbonne Universités, UPMC Univ Paris 06, CNRS, ISIRParisFrance
  3. 3.Robotic Systems Laboratory, School of EngineeringEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations