Warning! Urban Threats for Birds in Latin America

  • Diego Santiago-AlarconEmail author
  • Carlos A. Delgado-V


Wild birds are subject to a diverse array of natural causes of mortality, such as predation and parasitism. However, anthropogenic sources are becoming major threats for birds, particularly in urban systems, where major ecological impacts can affect both intra- and interspecific interactions. For instance, host-parasite interactions are modified in such a way that parasites can start appearing in novel hosts and generate health problems. Furthermore, nonnative predators can severely affect bird populations, at times driving them locally extinct when occurring in combination with the reduction of suitable sites. In this chapter, we show that urbanization entails such drastic alterations on the environment that antagonistic interactions can become an important threat to birds. Predation by cats has been identified as the most important threat to urban birds, accounting for up to billions of deaths annually in the USA alone, followed by bird collisions with building structures. Our review reveals a lack of knowledge related to the main urban bird threats in Latin America. The available information suggests that cats and collisions with building structures and vehicles might also be major sources of bird mortality in the region. However, it is premature to make generalizations at this stage because Latin American cities develop differently and are immersed in diverse socioecological contexts (i.e., different cultural habits imposed by local environmental conditions). We suggest that systematic studies in urban Latin America should focus on three main areas: (i) predation by cats; (ii) building and vehicle collisions; and (iii) alterations of host-parasite interactions.


Avian parasitology Building collisions Host-parasite interactions Urban ecology Urban predators 



The authors thank Patricia Ramírez Bastida for comments and suggestions that enhanced the clarity of our manuscript. DS-A was supported by a CONACYT-SEP (CB-2011-01-168524) grant.


  1. Agudelo-Álvarez L (2006) Colisión de aves contra los ventanales del campus de la Universidad Javeriana, sede Bogotá. Alternativas de mitigación. Ecología de Aves. Universidad Javeriana, Facultad de Estudios Ambientales y RuralesGoogle Scholar
  2. Agudelo-Álvarez L, Moreno-Velásquez J, Ocampo-Peñuela N (2010) Colisiones de aves contra ventanales en un campus universitario de Bogotá, Colombia. Ornitol Colomb 10:3–10Google Scholar
  3. Aguirre AA, Ostfeld RS, Daszak P (2012) New directions in conservation medicine: applied cases of ecological health. Oxford Univ Press, New YorkGoogle Scholar
  4. Alberti M (2008) Advances in urban ecology: integrating humans and ecological processes in urban ecosystems. Springer, New YorkCrossRefGoogle Scholar
  5. Álvarez-López H (1993) Mortandad de aves migratorias por colisión con una torre de radio. Boletín SAO IV:5–6Google Scholar
  6. Arnold TW, Zink RM (2011) Collision mortality has no discernible effect on population trends of north American birds. PLoS One 6:e24708CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bager A, da Rosa CA (2012) Impacts of the BR-392 highway on bird communities in extreme southern Brazil. Rev Bras Ornitol 20:30–39Google Scholar
  8. Barri FR (2010) Evaluación preliminar de la mortandad de mastofauna nativa por colisión con vehículos en tres rutas Argentinas. Ecología Aplicada 9:161–165CrossRefGoogle Scholar
  9. Becerra-Galindo LF, Benítez-Castañeda HD, Cely-Fajardo JE et al (2005) Notas sobre la anidación no exitosa de la Tingua moteada (Gallinula melanops) en un canal artificial del humedal Jaboque, Bogotá. Boletín SAO XV:29–38Google Scholar
  10. Belo NO, Pinheiro RT, Reis ES et al (2011) Prevalence and lineage diversity of avian haemosporidians from three distinct cerrado habitats in Brazil. PLoS One 6:e17654CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bird Life International (2016) Hypopyrrhus pyrohypogaster. The IUCN Red List of Threatened Species. Accessed 17 Mar 2017
  12. Bishop CA, Brogan JM (2013) Estimates of avian mortality attributed to vehicle collisions in Canada. Avian Conserv Ecol 8:2Google Scholar
  13. Blancher P (2013) Estimated number of birds killed by house cats (Felis catus) in Canada. Avian Conserv Ecol 8:3Google Scholar
  14. Bradley CA, Altizer S (2007) Urbanization and the ecology of wildlife diseases. Trends Ecol Evol 22:95–102CrossRefPubMedGoogle Scholar
  15. Calegaro-Marques C, Amato SB (2014) Urbanization breaks up host-parasite interactions: a case study on parasite community ecology of Rufous-bellied Thrushes (Turdus rufiventris) along a rural-urban gradient. PLoS One 9:e103144CrossRefPubMedPubMedCentralGoogle Scholar
  16. Calvert AM, Bishop CA, Elliot RD et al (2013) A synthesis of human-related avian mortality in Canada. Avian Conserv Ecol 8:11Google Scholar
  17. Carbó-Ramírez P, Zuria I, Schaefer HM et al (2017) Avian haemosporidians at three environmentally contrasting urban greensapaces. J Urban Ecol 3:juw011CrossRefGoogle Scholar
  18. Coimbra MAA, Mascarenhas CS, Krüger C et al (2009) Helminths parasitizing Columbina picui (Columbiformes: Columbidae) in Brazil. J Parasitol 95:1011–1012CrossRefPubMedGoogle Scholar
  19. Cupul-Magaña FB (2003) Nota sobre colisiones de aves en las ventanas de edificios universitarios en Puerto Vallarta, México. Huitzil 4:17–21Google Scholar
  20. da Rosa CA, Bager A (2012) Seasonality and habitat types affect roadkill of neotropical birds. J Environ Manag 30:1–5CrossRefGoogle Scholar
  21. de Sousa E, Berchieri AJ, Pinto AA et al (2010) Prevalence of Salmonella spp. antibodies to Toxoplasma gondii, and Newcastle disease virus in feral pigeons (Columba livia) in the city of Jaboticabal, Brazil. J Zoo Wildl Med 41:603–607CrossRefPubMedGoogle Scholar
  22. De La Ossa-Nadjar O, De La Ossa JV (2015) Vehicle collisions with wild fauna on the two roads that pass through the montes de María, Sucre, Colombia. Rev U D C A Act & Div Cient 18:503–511Google Scholar
  23. Delgado-V CA (2007) Muerte de mamíferos por vehículos en la vía del Escobero, Envigado (Antioquia), Colombia. Actual Biol 29:235–239Google Scholar
  24. Delgado-V CA (2014) Adiciones al atropellamiento vehicular de mamíferos en la vía de El Escobero, Envigado (Antioquia), Colombia. Revista EIA 11:145–151Google Scholar
  25. Delgado-V CA, Correa-H JC (2013) Estudios ornitológicos urbanos en Colombia: Revisión de literatura. Ing Cienc 19:216–237Google Scholar
  26. Delgado-V CA, French K (2012) Parasite-bird interactions in urban areas: current evidence and emerging questions. Landsc Urban Plan 105:5–14CrossRefGoogle Scholar
  27. Delgado-V CA, French K (2015) Differential influence of urbanisation on coccidian infection in two passerine birds. Parasitol Res 114:2231–2235CrossRefPubMedGoogle Scholar
  28. Delgado-V CA, Pulgarín-R PC, Calderón-F D (2005) Análisis de egagrópilas del Búho rayado (Asio clamator) en la ciudad de Medellín. Ornitol Colomb 3:100–103Google Scholar
  29. Dolbeer, RA (2015) Trends in reporting of wildlife strikes with civil aircraft and in identification of species struck under a primarily voluntary reporting system, 1990–2013. Tecnical report, U.S. Department of Agriculture Animal and Plant Health Inspection Service Wildlife Services. Accessed 13 Apr 2017
  30. Erickson WP, Johnson GD, Young DP Jr (2005) A summary and comparison of bird mortality from anthropogenic causes with an emphasis on collisions. Gen Tech Rep PSW-GTR-191. USDA Forest Service. Available via Treesearch. Accessed 25 Apr 2017
  31. Evans KL, Gaston KJ, Sharp SP et al (2009) Effects of urbanization on disease prevalence and age structure in blackbird Turdus merula populations. Oikos 118:774–782CrossRefGoogle Scholar
  32. Fokidis HB, Greiner EC, Deviche P (2008) Interspecific variation in avian blood parasites and haematology associated with urbanization in a desert habitat. J Avian Biol 39:300–310CrossRefGoogle Scholar
  33. Geue D, Partecke J (2008) Reduced parasite infestation in urban Eurasian blackbirds (Turdus merula): a factor favouring urbanization? Can J Zool 86:1419–1425Google Scholar
  34. Gondim LSQ, Abe-Sandes K, Uzêda RS et al (2010) Toxoplasma gondii and Neospora caninum in sparrows (Passer domesticus) in the northeast of Brazil. Vet Parasitol 168:121–124CrossRefPubMedGoogle Scholar
  35. Habberfield MW, St. Clair CC (2016) Ultraviolet lights do not deter songbirds at feeders. J Ornithol 157:239–248CrossRefGoogle Scholar
  36. Hager SB, Cosentino BJ, McKay KJ (2012) Scavenging affects persistence of avian carcasses resulting from window collisions in an urban landscape. J Field Ornithol 83:203–211CrossRefGoogle Scholar
  37. Hamer SA, Lehrer E, Magle SB (2012) Wild birds as sentinels for multiple zoonotic pathogens along an urban to rural gradient in greater Chicago, Illinois. Zoonoses Public Health 59:355–364CrossRefPubMedGoogle Scholar
  38. Hernández-Lara C, González-García F, Santiago-Alarcon D (2017) Spatial and seasonal variation of avian malaria infections in five different land use types within a Neotropical montane forest matrix. Landsc Urban Plan 157:151–160CrossRefGoogle Scholar
  39. Johnson PTJ, Preston DL, Hoverman JT et al (2013) Biodiversity decreases disease through predictable changes in host community competence. Nature 494:230–233CrossRefPubMedGoogle Scholar
  40. Jones KE, Patel NG, Levy MA et al (2008) Global trends in emerging infectious diseases. Nature 451:990–993CrossRefPubMedGoogle Scholar
  41. Kilpatrick AM, Kramer LD, Jones MJ et al (2006) West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4:–e82Google Scholar
  42. Klem D Jr, Farmer CJ, Delacretaz N et al (2009) Architectural and landscape risk factors associated with bird-glass collisions in an urban environment. Wilson J Ornithol 121:126–134CrossRefGoogle Scholar
  43. Klem D Jr, Saenger PG (2013) Evaluating the effectiveness of select visual signals to prevent bird-window collisions. Wilson J Ornithol 125:406–411CrossRefGoogle Scholar
  44. Komar N, Bessoff K, Diaz A et al (2012) Avian hosts of West Nile virus in Puerto Rico. Vector Borne Zoonotic Dis 12:47–54CrossRefPubMedGoogle Scholar
  45. Lafferty KD, Allesina S, Arim M et al (2008) Parasites in food webs: the ultimate missing links. Ecol Lett 11:533–546CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lima MR, Simpson L, Fecchio A et al (2010) Low prevalence of haemosporidian parasites in the introduced house sparrow (Passer domesticus) in Brazil. Acta Parasitol 55:297–303CrossRefGoogle Scholar
  47. Longcore T, Rich C, Mineau P et al (2012) An estimate of avian mortality at communication towers in the United States and Canada. PLoS One 7:e34025CrossRefPubMedPubMedCentralGoogle Scholar
  48. Loss SR, Will T, Marra PP (2013) The impact of free-ranging domestic cats on wildlife of the United States. Nat Commun 4:1396CrossRefPubMedGoogle Scholar
  49. Loss SR, Will T, Loss SS et al (2014a) Bird-building collisions in the United States: estimates of annual mortality and species vulnerability. Condor 116:8–23CrossRefGoogle Scholar
  50. Loss SR, Will T, Marra PP (2014b) Estimation of bird-vehicle collision mortality on U.S roads. J Wildlife Manage 78:763–771CrossRefGoogle Scholar
  51. Loss SR, Will T, Marra PP (2015) Direct mortality of birds from anthropogenic causes. Annu Rev Ecol Evol Syst 46:99–120CrossRefGoogle Scholar
  52. Loyd KAT, Hernandez SM, Carroll JP et al (2013) Quantifying free-roaming domestic cat predation using animal-borne video cameras. Biol Conserv 160:183–189CrossRefGoogle Scholar
  53. MacGregor-Fors I, Schondube JE (2011) Gray vs. green urbanization: relative importance of urban features for urban bird communities. Basic Appl Ecol 12:372–381CrossRefGoogle Scholar
  54. MacGregor-Fors I, Avendaño-Reyes S, Bandala VM et al (2015) Multi-taxonomic diversity patterns in a neotropical green city: a rapid biological assessment. Urban Ecosyst 18:633–647CrossRefGoogle Scholar
  55. Machtans CS, Wedeles CHR, Bayne EM (2013) A first estimate for Canada of the number of birds killed by colliding with building windows. Avian Conserv Ecol 8:6Google Scholar
  56. Manville AM II (2009) Towers, turbines, power lines, and buildings – Steps being taken by the U.S. Fish and Wildlife Service to avoid or minimize take of migratory birds at these structures. In: Rich TD, Arizmendi C, Demarest DW et al (eds) Tundra to tropics: connecting birds, habitats, and people. Proceedings of the 4th International Partners in Flight Conference. Partners in Flight, McAllen, p 262–272Google Scholar
  57. Marcogliese DJ (2005) Parasites of the superorganism: are they indicators of ecosystem health? Int J Parasitol 35:705–716CrossRefPubMedGoogle Scholar
  58. Martin LB, Boruta M (2014) The impacts of urbanization on avian disease transmission and emergence. In: Gil D, Brumm H (eds) Avian urban ecology: behavioural and physiological adaptations. Oxford Univ. Press, Oxford, pp 116–128Google Scholar
  59. Marzal A, Ricklefs RE, Valkiūnas G et al (2011) Diversity, loss, and gain of malaria parasites in a globally invasive bird. PLoS One 6:e21905CrossRefPubMedPubMedCentralGoogle Scholar
  60. McCarthy RJ, Levine SH, Reed JM (2012) Estimation of effectiveness of three methods of feral cat population control by use of a simulation model. J Am Vet Med Assoc 243:502–511CrossRefGoogle Scholar
  61. Menacho-Odio RM (2015) Colisión de aves contra ventanas en Costa Rica: Conociendo el problema a partir de datos de museos, ciencia ciudadana y el aporte de biólogos. Zeledonia 19:10–21Google Scholar
  62. Morales-Betoulle ME, Komar N, Panella NA et al (2013) West Nile virus ecology in a tropical ecosystem in Guatemala. Am J Trop Med Hyg 88:116–126CrossRefPubMedPubMedCentralGoogle Scholar
  63. Nogales M, Vidal E, Medina FM et al (2013) Feral cats and biodiversity conservation: the urgent prioritization of island management. Bioscience 63:804–810CrossRefGoogle Scholar
  64. Ocampo-Peñuela N, Peñuela-Recio L, Ocampo-Durán Á (2016) Decals prevent bird-window collisions at residences: a successful case study from Colombia. Ornitol Colomb 15:94–101Google Scholar
  65. Oliveira Cardoso C, do Nascimento Gomes D, Soares dos Santos AG et al (2014) Bird strike risk analysis at the international airport of Parnaíba, Piauí, Brazil. Ornitol Neotrop 25:179–193Google Scholar
  66. Orduña-Villaseñor MV (2015) Dieta de gato doméstico Felis silvestris catus en el municipio de Morelia, Michoacán. MSc dissertation, Universidad Nacional Autónoma de México – Centro de Investigaciones en Ecosistemas (CIEco)Google Scholar
  67. Ortega-Álvarez R, MacGregor-Fors I (2011) Dusting-off the file: a review of knowledge on urban ornithology in Latin America. Landsc Urban Plan 101:1–10CrossRefGoogle Scholar
  68. Oviedo S (2014) Estudio sobre preferencias de métodos utilizados para evitar el choque de aves contra puertas y ventanas de vidrio en Costa Rica. Programa Manejo de Recursos Naturales, Universidad Estatal a Distancia. Available via DOCZZ. Accessed 17 Apr 2017
  69. Padilla LR, Santiago-Alarcon D, Merkel J et al (2004) Survey for Haemoproteus spp, Trichomonas gallinae, Chlamydophila psittaci, and Salmonella spp. in Galápagos Islands Columbiformes. J Zoo Wildl Med 35:60–64CrossRefPubMedGoogle Scholar
  70. Palinauskas V, Valkiūnas G, Bolshakov VC et al (2008) Plasmodium relictum (lineage P-SGS1): effects on experimentally infected passerine birds. Exp Parasitol 120:372–380CrossRefPubMedGoogle Scholar
  71. Poulin R (2007) Evolutionary ecology of parasites, 2nd edn. Princeton University Press, New JerseyGoogle Scholar
  72. Poulin R, Morand S (2000) The diversity of parasites. Q Rev Biol 75:277–293CrossRefPubMedGoogle Scholar
  73. Roberts LS, Janovy J Jr (2009) Foundations of parasitology, 8th edn. McGraw-Hill, New YorkGoogle Scholar
  74. Santiago-Alarcon D, Havelka P, Schaefer HM et al (2012) Bloodmeal analysis reveals avian Plasmodium infections and broad host preferences of Culicoides (Diptera: Ceratopogonidae) vectors. PLoS One 7:e31098CrossRefPubMedPubMedCentralGoogle Scholar
  75. Santiago-Alarcon D, Carbó-Ramírez P, MacGregor-Fors I, Chávez-Zichinelli CA, Yeh PJ. Are cities that risky? An experimental test of lower avian malaria prevalence in an urban vs. a non-urban setting using a successful non-native urban invasive bird (in preparation)Google Scholar
  76. Santiago-Alarcon D, Havelka P, Pineda E et al (2013) Urban forests as hubs for novel zoonosis: blood meal analysis, seasonal variation in Culicoides (Diptera: Ceratopogonidae) vectors, and avian haemosporidians. Parasitology 140:1799–1810CrossRefPubMedGoogle Scholar
  77. Santiago-Alarcon D, MacGregor-Fors I, Kühnert K et al (2016) Avian haemosporidian parasites in an urban forest and their relationship to bird size and abundance. Urban Ecosyst 19:331–346CrossRefGoogle Scholar
  78. Shochat E, Lerman SB, Anderies JM et al (2010) Invasion, competition, and biodiversity loss in urban ecosystems. Bioscience 60:199–208CrossRefGoogle Scholar
  79. Smallwood KS (2013) Comparing bird and bat fatality-rate estimates among north American wind-energy projects. Wildl Soc Bull 37:19–33CrossRefGoogle Scholar
  80. Stevens MHH (2009) A primer of ecology with R. Springer, New YorkCrossRefGoogle Scholar
  81. Suárez-Rodríguez M, López-Rull I, Macías Garcia C (2012) Incorporation of cigarette butts into nests reduces nest ectoparasite load in urban birds: new ingredients for an old recipe? Biol Lett 9:20120931CrossRefPubMedGoogle Scholar
  82. Suárez-Rodríguez M, Montero-Montoya RD, Macías Garcia C (2017) Anthropogenic nest materials may increase breeding costs for urban birds. Front Ecol Evol 5:4CrossRefGoogle Scholar
  83. van der Ree R, Heinze D, McCarthy M et al (2009) The ecology of roads in urban and urbanising landscapes. In: McDonell MJ, Hahs AK, Breuste JH (eds) Ecology of cities and towns: a comparative approach. Cambridge University Press, Cambridge, pp 185–196Google Scholar
  84. van Heezik Y, Smyth A, Adams A et al (2010) Do domestic cats impose an unsustainable harvest on urban bird populations? Biol Conserv 143:121–130Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Red de Biología y Conservación de Vertebrados, Instituto de Ecología, A.C. (INECOL)XalapaMexico
  2. 2.Facultad de Ciencias y Biotecnología, Universidad CESMedellínColombia

Personalised recommendations