Pedometrics pp 521-546 | Cite as

Pedometric Valuation of the Soil Resource

  • David G. Rossiter
  • Allan E. Hewitt
  • Estelle J. Dominati
Part of the Progress in Soil Science book series (PROSOIL)


Soil forms the thin skin of the Earth and is the site of many ecological processes, transformations, and fluxes. It forms the substrate for most of the activities that take place at the Earth’s surface, including almost all food production and human occupation, and underpins both natural and managed ecosystems. Soils differ in their structure, composition, and ability to function under a use. Soil is a multifunctional resource that affects human well-being both directly (e.g., food provision) and indirectly (e.g., surface and groundwater supplies) and that affects all near-land surface ecological processes. Clearly, soil is “valuable” as that term is understood in common language. The pedometric program as outlined in this book, i.e., the development of “quantitative methods for the study of soil distribution … as a sustainable resource,” should therefore include an attempt to quantify this value. Chapter  1 of the present book lists as the third of four items on the pedometric agenda “evaluating the utility and quality of soil,” and it is in this sense that we attempt in this chapter to define and quantify the value of the soil resource. This process is referred to as “valuation.”


  1. Anselin L, Bera AK (1998) Spatial dependence in linear regression models with an introduction to spatial econometrics. In: Ullah A, Giles DEA (eds) Handbook of applied economic statistics. Marcel Dekker, New York, pp 237–289Google Scholar
  2. Bagherzadeh A, Gholizadeh A (2016) Qualitative land suitability evaluation by parametric and fuzzy approaches for sugar beet crop in Sabzevar plain, northeast of Iran. Agric Res 5(3):277–284. doi: 10.1007/s40003-016-0210-1 CrossRefGoogle Scholar
  3. Baveye PC (2015) Grand challenges in the research on soil processes. Front Environ Sci 3:10. doi: 10.3389/fenvs.2015.00010 CrossRefGoogle Scholar
  4. Baveye PC, Baveye J, Gowdy J (2013) Monetary valuation of ecosystem services: it matters to get the timeline right. Ecol Econ 95:231–235. doi: 10.1016/j.ecolecon.2013.09.009 CrossRefGoogle Scholar
  5. Bouma J (2001) The role of soil science in the land use negotiation process. Soil Use Manag 17:1–6. doi: 10.1111/j.1475-2743.2001.tb00001.x CrossRefGoogle Scholar
  6. Boyd J, Banzhaf S (2007) What are ecosystem services? The need for standardized environmental accounting units. Ecol Econ 63:616–626CrossRefGoogle Scholar
  7. Braat LC, de Groot R (2012) The ecosystem services agenda: bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosyst Serv 1:4–15. doi: 10.1016/j.ecoser.2012.07.011 CrossRefGoogle Scholar
  8. Burrough PA (1989) Fuzzy mathematical methods for soil survey and land evaluation. J Soil Sci 40:477–492. doi: 10.1111/j.1365-2389.1989.tb01290.x CrossRefGoogle Scholar
  9. Calzolari C, Ungaro F, Filippi N et al (2016) A methodological framework to assess the multiple contributions of soils to ecosystem services delivery at regional scale. Geoderma 261:190–203. doi: 10.1016/j.geoderma.2015.07.013 CrossRefGoogle Scholar
  10. Costanza R (ed) (1997) An introduction to ecological economics. St. Lucie Press; International Society for Ecological Economics, Boca RatonGoogle Scholar
  11. Costanza R, Daly HE (1992) Natural capital and sustainable development. Conserv Biol 6:37–46. doi: 10.1046/j.1523-1739.1992.610037.x CrossRefGoogle Scholar
  12. Costanza R, Wainger L (eds) (1991) Ecological economics: the science and management of sustainability. Columbia University Press, New YorkGoogle Scholar
  13. de Groot RS (1992) Functions of nature : evaluation of nature in environmental planning, management and decision making. Wolters-Noordhoff BV, GroningenGoogle Scholar
  14. de Groot RS (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41:393–408. doi: 10.1016/S0921-8009(02)00089-7 CrossRefGoogle Scholar
  15. de Paul OV, Lal R (2016) Towards a standard technique for soil quality assessment. Geoderma 265:96–102. doi: 10.1016/j.geoderma.2015.11.023 CrossRefGoogle Scholar
  16. Dominati E, Patterson M, Mackay A (2010) A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol Econ 69:1858–1868. doi: 10.1016/j.ecolecon.2010.05.002 CrossRefGoogle Scholar
  17. Dominati E, Mackay A, Green S, Patterson M (2014a) A soil change-based methodology for the quantification and valuation of ecosystem services from agro-ecosystems: a case study of pastoral agriculture in New Zealand. Ecol Econ 100:119–129. doi: 10.1016/j.ecolecon.2014.02.008 CrossRefGoogle Scholar
  18. Dominati EJ, Mackay A, Lynch B, Heath N, Millner I (2014b) An ecosystem services approach to the quantification of shallow mass movement erosion and the value of soil conservation practices. Ecosyst Serv 9:204–215. Doi:http://dx.Doi.Org/10.1016/j.Ecoser.2014.06.006 CrossRefGoogle Scholar
  19. Dominati EJ, Mackay AD, Bouma J, Green S (2016) An ecosystems approach to quantify soil performance for multiple outcomes: the future of land evaluation? Soil Sci Soc Am J 80:438–449. doi: 10.2136/sssaj2015.07.0266 CrossRefGoogle Scholar
  20. FAO (1976) A framework for land evaluation, FAO Soils Bulletin 32. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  21. FAO (1985) Guidelines: land evaluation for irrigated agriculture. Food and agriculture Organization of the United Nations, RomeGoogle Scholar
  22. FAO (1993) Guidelines for land-use planning, FAO Development Series 1. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  23. FAO (2007) Land evaluation: towards a revised framework. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  24. Farber SC, Costanza R, Wilson MA (2002) Economic and ecological concepts for valuing ecosystem services. Ecol Econ 41:375–392. doi: 10.1016/S0921-8009(02)00088-5 CrossRefGoogle Scholar
  25. Goedert WJ (1983) Management of the Cerrado Soils of Brazil – a review. J Soil Sci 34:405–428. doi: 10.1111/j.1365-2389.1983.tb01045.x CrossRefGoogle Scholar
  26. Gómez-Baggethun E, Ruiz-Pérez M (2011) Economic valuation and the commodification of ecosystem services. Prog Phys Geogr 35:613–628. doi: 10.1177/0309133311421708 CrossRefGoogle Scholar
  27. Guerry AD, Polasky S, Lubchenco J et al (2015) Natural capital and ecosystem services informing decisions: from promise to practice. PNAS 112:7348–7355. doi: 10.1073/pnas.1503751112 CrossRefGoogle Scholar
  28. Haygarth PM, Ritz K (2009) The future of soils and land use in the UK: soil systems for the provision of land-based ecosystem services. Land Use Policy 26:S187–S197. doi: 10.1016/j.landusepol.2009.09.016 CrossRefGoogle Scholar
  29. Hewitt A, Dominati E, Webb T, Cuthill T (2015) Soil natural capital quantification by the stock adequacy method. Geoderma 241:107–114. doi: 10.1016/j.geoderma.2014.11.014 CrossRefGoogle Scholar
  30. Huhtala A, Marklund P-O (2008) Stringency of environmental targets in animal agriculture: shedding light on policy with shadow prices. Eur Rev Agric Econ 35:193–217. doi: 10.1093/erae/jbn025 CrossRefGoogle Scholar
  31. Jobstvogt N, Townsend M, Witte U, Hanley N (2014) How can we identify and communicate the ecological value of deep-sea ecosystem services? PLoS One 9:e100646. doi: 10.1371/journal.pone.0100646 CrossRefGoogle Scholar
  32. Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, … Ritchie JT (2003). The DSSAT cropping system model. Eur J Agron 18:235–265. doi: 10.1016/S1161-0301(02)00107-7CrossRefGoogle Scholar
  33. Karlen DL, Ditzler CA, Andrews SS (2003) Soil quality: why and how? Geoderma 114:145–156CrossRefGoogle Scholar
  34. Keesstra S, Geissen V, Mosse K et al (2012) Soil as a filter for groundwater quality. Curr Opin Environ Sustain 4:507–516. doi: 10.1016/j.cosust.2012.10.007 CrossRefGoogle Scholar
  35. Lark RM, Cullis BR (2004) Model based analysis using REML for inference from systematically sampled data on soil. Eur J Soil Sci 55:799–813CrossRefGoogle Scholar
  36. Martinez-Alier J (2002) The environmentalism of the poor: a study of ecological conflicts and valuation. Edward Elgar Publishing Ltd, CheltenhamCrossRefGoogle Scholar
  37. McBratney A, Field DJ, Koch A (2014) The dimensions of soil security. Geoderma 213:203–213. doi: 10.1016/j.geoderma.2013.08.013 CrossRefGoogle Scholar
  38. MEA – Millennium Ecosystem Assessment Program (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DCGoogle Scholar
  39. Moebius-Clune BN, Moebius-Clune DJ, Gugino BK et al (2016) Comprehensive assessment of soil health – the Cornell framework manual, 3rd edn. Cornell University, School of Integrative Plant Sciences, Soil and Crop Sciences section, Ithaca.
  40. Noble AD, Gillman GP, Ruaysoongnern S (2000) A cation exchange index for assessing degradation of acid soil by further acidification under permanent agriculture in the tropics. Eur J Soil Sci 51:233–243. doi: 10.1046/j.1365-2389.2000.00313.x CrossRefGoogle Scholar
  41. Olson KR, Olson GW (1986) Use of multiple regression analysis to estimate average corn yields using selected soils and climatic data. Agric Syst 20:105–120CrossRefGoogle Scholar
  42. Olson KR, Garcia-Paredes JD, Majchkrzah RN, Lang JM (2001) Equations for predicting grain crop yields of Illinois soils using soil properties. Soil Surv Horiz 42:52–64CrossRefGoogle Scholar
  43. Pires M (2004) Watershed protection for a world city: the case of New York. Land Use Policy 21:161–175. doi: 10.1016/j.landusepol.2003.08.001 CrossRefGoogle Scholar
  44. Riquier J (1974) A summary of parametric methods of soil and land evaluation. In: Approaches to land classification, Soils Bulletin 22. Food & Agriculture Organization of the United Nations, RomeGoogle Scholar
  45. Robertson M (2012) Functions, services and values. Wetlandia. Retrieved August 3, 2017, from
  46. Robinson DA, Lebron I, Vereecken H (2009) On the definition of the natural capital of soils: a framework for description, evaluation, and monitoring. Soil Sci Soc Am J 73:1904–1911. doi: 10.2136/sssaj2008.0332 CrossRefGoogle Scholar
  47. Robinson DA, Hockley N, Dominati E et al (2012) Natural capital, ecosystem services, and soil change: why soil science must embrace an ecosystems approach. Vadose Zone J. doi: 10.2136/vzj2011.0051 CrossRefGoogle Scholar
  48. Robinson DA, Fraser I, Dominati EJ et al (2014) On the value of soil resources in the context of natural capital and ecosystem service delivery. Soil Sci Soc Am J 78:685. doi: 10.2136/sssaj2014.01.0017 CrossRefGoogle Scholar
  49. Rosen S (1974) Hedonic prices and implicit markets: product differentiation in pure competition. J Polit Econ 82:34–55. doi: 10.2307/1830899 CrossRefGoogle Scholar
  50. Rossiter DG (1990) ALES: a framework for land evaluation using a microcomputer. Soil Use Manag 6:7–20. doi: 10.1111/j.1475-2743.1990.tb00790.x CrossRefGoogle Scholar
  51. Rossiter DG (1995) Economic land evaluation: why and how. Soil Use Manag 11:132–140. doi: 10.1111/j.1475-2743.1995.tb00511.x CrossRefGoogle Scholar
  52. Rossiter DG (1996) A theoretical framework for land evaluation (with discussion). Geoderma 72:165–202. doi: 10.1016/0016-7061(96)00031-6 CrossRefGoogle Scholar
  53. Rothkegel W (1950) Geschichtliche Entwicklung der Bodenbonitierungen, und Wesen und Bedeutung der deutschen Bodenschätzung. E. Ulmer, StuttgartGoogle Scholar
  54. Samarasinghe O, Greenhalgh S (2013) Valuing the soil natural capital: a New Zealand case study. Soil Res 51:278–287. doi: 10.1071/SR12246 CrossRefGoogle Scholar
  55. Samarasinghe O, Greenhalgh S, Vesely E-T (2013) Looking at soils through the natural capital and ecosystem services lens, Landcare Research Science Series No. 41. Manaaki Whenua Press, Lincoln.
  56. Soil Survey Staff (1999) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, 2nd edn. US Department of Agriculture Soil Conservation Service, Washington, DCGoogle Scholar
  57. Starodubtsev VM, Petrenko LR, Struk VS (2011) Soil evaluation – materials for lectures and seminars. AGRARMEDIA Group, KievGoogle Scholar
  58. Stockle CO, Donatelli M, Nelson R (2003) CropSyst, a cropping systems simulation model. Eur J Agron 18:289–307. doi: 10.1016/S1161-0301(02)00109-0 CrossRefGoogle Scholar
  59. Storie RE (1933) An index for rating the agricultural value of soils. University of California Agricultural Experiment Station, BerkleyGoogle Scholar
  60. Storie RE (1978) The Storie Index soil rating revised. Special publication 3203. University of California, Division of Agricultural SciencesGoogle Scholar
  61. TEEB (2008) The economics of ecosystems and biodiversity – an interim report. European Commission, BrusselsGoogle Scholar
  62. Townsend M, Thrush SF, Carbines MJ (2011) Simplifying the complex: an “Ecosystem Principles Approach” to goods and services management in marine coastal ecosystems. Mar Ecol Prog Ser 434:291–301. doi: 10.3354/meps09118 CrossRefGoogle Scholar
  63. Ulanowicz R (1991) Contributory values of ecosystem resources. In: Costanza R (ed) Ecological economics: the science and management of sustainability. Columbia Univ Press, New YorkGoogle Scholar
  64. van Ittersum MK, Leffelaar PA, van Keulen H, Kropff MJ, Bastiaans L, Goudriaan J (2003) On approaches and applications of the Wageningen crop models. Eur J Agron 18:201–234. doi: 10.1016/S1161-0301(02)00106-5 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • David G. Rossiter
    • 1
    • 2
  • Allan E. Hewitt
    • 3
  • Estelle J. Dominati
    • 4
  1. 1.School of Integrative Plant Science, Soil & Crop Sciences SectionCornell UniversityIthacaUSA
  2. 2.ISRIC-World Soil InformationWageningenThe Netherlands
  3. 3.Manaaki Whenua – Landcare ResearchLincolnNew Zealand
  4. 4.Farm Systems and Environment, Land and Environment, AgResearch GrasslandsPalmerston NorthNew Zealand

Personalised recommendations