Advertisement

Efficient Parallel Strategy Improvement for Parity Games

  • John FearnleyEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10427)

Abstract

We study strategy improvement algorithms for solving parity games. While these algorithms are known to solve parity games using a very small number of iterations, experimental studies have found that a high step complexity causes them to perform poorly in practice. In this paper we seek to address this situation. Every iteration of the algorithm must compute a best response, and while the standard way of doing this uses the Bellman-Ford algorithm, we give experimental results that show that one-player strategy improvement significantly outperforms this technique in practice. We then study the best way to implement one-player strategy improvement, and we develop an efficient parallel algorithm for carrying out this task, by reducing the problem to computing prefix sums on a linked list. We report experimental results for these algorithms, and we find that a GPU implementation of this algorithm shows a significant speedup over single-core and multi-core CPU implementations.

References

  1. 1.
    Hoffman, A.J., Karp, R.M.: On nonterminating stochastic games. Manag. Sci. 12(5), 359–370 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Björklund, H., Vorobyov, S.G.: A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games. Discret. Appl. Math. 155(2), 210–229 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cochet-Terrasson, J., Gaubert, S.: Policy iteration algorithm for shortest path problems. Technical report (2000)Google Scholar
  4. 4.
    Cole, R., Vishkin, U.: Faster optimal parallel prefix sums and list ranking. Inf. Comput. 81(3), 334–352 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Condon, A.: On algorithms for simple stochastic games. In: Proceedings of a DIMACS Workshop, Advances in Computational Complexity Theory, pp. 51–72 (1990)Google Scholar
  6. 6.
    Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: Proceedings of FOCS, pp. 368–377 (1991)Google Scholar
  7. 7.
    Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of \(\mu \)-calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396. Springer, Heidelberg (1993). doi: 10.1007/3-540-56922-7_32 CrossRefGoogle Scholar
  8. 8.
    Fearnley, J., Savani, R.: The complexity of all-switches strategy improvement. In: Proceedings of SODA, pp. 130–139 (2016)Google Scholar
  9. 9.
    Friedmann, O.: An exponential lower bound for the latest deterministic strategy iteration algorithms. Log. Methods Comput. Sci. 7(3) (2011). Paper 23. http://www.lmcs-online.org/ojs/viewarticle.php?id=779&layout=abstract
  10. 10.
    Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04761-9_15 CrossRefGoogle Scholar
  11. 11.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games: A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  12. 12.
    Helman, D.R., JáJá, J.: Designing practical efficient algorithms for symmetric multiprocessors. In: Goodrich, M.T., McGeoch, C.C. (eds.) ALENEX 1999. LNCS, vol. 1619, pp. 37–56. Springer, Heidelberg (1999). doi: 10.1007/3-540-48518-X_3 CrossRefGoogle Scholar
  13. 13.
    Hoffmann, P., Luttenberger, M.: Solving parity games on the GPU. In: Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 455–459. Springer, Cham (2013). doi: 10.1007/978-3-319-02444-8_34 CrossRefGoogle Scholar
  14. 14.
    Huth, M., Kuo, J.H.-P., Piterman, N.: Concurrent small progress measures. In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC 2011. LNCS, vol. 7261, pp. 130–144. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34188-5_13 CrossRefGoogle Scholar
  15. 15.
    Jurdziński, M.: Deciding the winner in parity games is in UP \(\cap \) co-UP. Inf. Process. Lett. 68(3), 119–124 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000). doi: 10.1007/3-540-46541-3_24 CrossRefGoogle Scholar
  17. 17.
    Kandziora, J.: Playing parity games on the playstation 3. In: Twente Student Conference (2009)Google Scholar
  18. 18.
    Keiren, J.J.A.: Benchmarks for parity games. In: Dastani, M., Sirjani, M. (eds.) FSEN 2015. LNCS, vol. 9392, pp. 127–142. Springer, Cham (2015). doi: 10.1007/978-3-319-24644-4_9 CrossRefGoogle Scholar
  19. 19.
    Ladner, R.E., Fischer, M.J.: Parallel prefix computation. J. ACM 27(4), 831–838 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Luttenberger, M.: Strategy iteration using non-deterministic strategies for solving parity games. CoRR, abs/0806.2923 (2008)Google Scholar
  21. 21.
    Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming. Algorithmica 16(4–5), 498–516 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Meyer, P.J., Luttenberger, M.: Solving mean-payoff games on the GPU. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 262–267. Springer, Cham (2016). doi: 10.1007/978-3-319-46520-3_17 CrossRefGoogle Scholar
  23. 23.
    Mostowski, A.W.: Games with forbidden positions. Technical report 78, University of Gdańsk (1991)Google Scholar
  24. 24.
    Puri, A.: Theory of hybrid systems and discrete event systems. Ph.D. thesis, University of California, Berkeley (1995)Google Scholar
  25. 25.
    Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York (2005)zbMATHGoogle Scholar
  26. 26.
    Schewe, S.: An optimal strategy improvement algorithm for solving parity and payoff games. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 369–384. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-87531-4_27 CrossRefGoogle Scholar
  27. 27.
    Stirling, C.: Local model checking games (extended abstract). In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 1–11. Springer, Heidelberg (1995). doi: 10.1007/3-540-60218-6_1 CrossRefGoogle Scholar
  28. 28.
    van de Pol, J., Weber, M.: A multi-core solver for parity games. Electr. Notes Theoret. Comput. Sci. 220(2), 19–34 (2008)CrossRefzbMATHGoogle Scholar
  29. 29.
    van der Berg, F.: Solving parity games on the playstation 3. In: Twente Student Conference (2010)Google Scholar
  30. 30.
    Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000). doi: 10.1007/10722167_18 CrossRefGoogle Scholar
  31. 31.
    Wei, Z., JáJá, J.: Optimization of linked list prefix computations on multithreaded GPUs using CUDA. Parallel Process. Lett. 22(4), 1250012 (2012)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoret. Comput. Sci. 200, 135–183 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zwick, U., Paterson, M.S.: The complexity of mean payoff games on graphs. Theoret. Comput. Sci. 158(1–2), 343–359 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations