Advertisement

SMTCoq: A Plug-In for Integrating SMT Solvers into Coq

  • Burak Ekici
  • Alain Mebsout
  • Cesare Tinelli
  • Chantal Keller
  • Guy Katz
  • Andrew Reynolds
  • Clark Barrett
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10427)

Abstract

This paper describes SMTCoq, a plug-in for the integration of external solvers into the Coq proof assistant. Based on a checker for generic first-order proof certificates fully implemented and proved correct in Coq, SMTCoq offers facilities to check answers from external SAT and SMT solvers and to increase Coq’s automation using such solvers, all in a safe way. The current version supports proof certificates produced by the SAT solver ZChaff, for propositional logic, and the SMT solvers veriT and CVC4, for the quantifier-free fragment of the combined theory of fixed-size bit vectors, functional arrays with extensionality, linear integer arithmetic, and uninterpreted function symbols.

References

  1. 1.
    Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22110-1_14 CrossRefGoogle Scholar
  2. 2.
    Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0. In: Proceedings of 8th International Workshop on Satisfiability Modulo Theories (SMT), p. 14 (2010)Google Scholar
  3. 3.
    Besson, F., Fontaine, P., Théry, L.: A flexible proof format for SMT: a proposal. In: Proceedings of 1st International Workshop on Proof eXchange for Theorem Proving (PxTP), pp. 15–26 (2011)Google Scholar
  4. 4.
    Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14052-5_14 CrossRefGoogle Scholar
  5. 5.
    Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: veriT: an open, trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 151–156. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02959-2_12 CrossRefGoogle Scholar
  6. 6.
    Gonthier, G., Mahboubi, A.: An Introduction to small scale reflection in coq. J. Formaliz. Reason. 3(2), 95–152 (2010)MathSciNetMATHGoogle Scholar
  7. 7.
    Hadarean, L., Barrett, C., Reynolds, A., Tinelli, C., Deters, M.: Fine grained SMT proofs for the theory of fixed-width bit-vectors. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 340–355. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48899-7_24 CrossRefGoogle Scholar
  8. 8.
    Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. ACM 40(1), 143–184 (1993)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Jourdan, J.-H., Pottier, F., Leroy, X.: Validating LR(1) parsers. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 397–416. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28869-2_20 CrossRefGoogle Scholar
  10. 10.
    Katz, G., Barrett, C., Tinelli, C., Reynolds, A., Hadarean, L.: Lazy proofs for DPLL(T)-based SMT solvers. In: Proceedings of 16th International Conference on Formal Methods in Computer-Aided Design (FMCAD), pp. 93–100 (2016)Google Scholar
  11. 11.
    Keller, C.: A matter of trust: skeptical communication between coq and external provers. Ph.D. thesis, École Polytechnique, June 2013Google Scholar
  12. 12.
    Mahajan, Y., Fu, Z., Malik, S.: Zchaff 2004: an efficient SAT solver. In: Proceedings of 7th International Conference on Theory and Applications of Satisfiability Testing (SAT), pp. 360–375 (2004)Google Scholar
  13. 13.
    Reynolds, A., Hadarean, L., Tinelli, C., Ge, Y., Stump, A., Barrett, C.: Comparing proof systems for linear real arithmetic with LFSC. In: Proceedings of 8th International Workshop on Satisfiability Modulo Theories (SMT) (2010)Google Scholar
  14. 14.
    Stump, A., Oe, D., Reynolds, A., Hadarean, L., Tinelli, C.: SMT proof checking using a logical framework. Formal Methods Syst. Des. 41(1), 91–118 (2013)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Burak Ekici
    • 1
  • Alain Mebsout
    • 1
  • Cesare Tinelli
    • 1
  • Chantal Keller
    • 2
  • Guy Katz
    • 3
  • Andrew Reynolds
    • 1
  • Clark Barrett
    • 3
  1. 1.The University of IowaIowa CityUSA
  2. 2.LRI, Univ. Paris-Sud, CNRS, Université Paris-SaclayOrsayFrance
  3. 3.Stanford UniversityStanfordUSA

Personalised recommendations