Markov Automata with Multiple Objectives
- 8 Citations
- 2.1k Downloads
Abstract
Markov automata combine non-determinism, probabilistic branching, and exponentially distributed delays. This compositional variant of continuous-time Markov decision processes is used in reliability engineering, performance evaluation and stochastic scheduling. Their verification so far focused on single objectives such as (timed) reachability, and expected costs. In practice, often the objectives are mutually dependent and the aim is to reveal trade-offs. We present algorithms to analyze several objectives simultaneously and approximate Pareto curves. This includes, e.g., several (timed) reachability objectives, or various expected cost objectives. We also consider combinations thereof, such as on-time-within-budget objectives—which policies guarantee reaching a goal state within a deadline with at least probability p while keeping the allowed average costs below a threshold? We adopt existing approaches for classical Markov decision processes. The main challenge is to treat policies exploiting state residence times, even for untimed objectives. Experimental results show the feasibility and scalability of our approach.
Keywords
Markov Automata (MAs) Markov Decision Process (MDPs) Approximate Pareto Curve Achievement Points Multi-objective Model CheckingNotes
Acknowledgement
This work was supported by the CDZ project CAP (GZ 1023).
References
- 1.Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: Proceedings of LICS, IEEE CS, pp. 342–351 (2010)Google Scholar
- 2.Deng, Y., Hennessy, M.: On the semantics of Markov automata. Inf. Comput. 222, 139–168 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and extensible framework for dynamic fault tree analysis. IEEE Trans. Dependable Secur. Comput. 7(2), 128–143 (2010)CrossRefGoogle Scholar
- 4.Coste, N., Hermanns, H., Lantreibecq, E., Serwe, W.: Towards performance prediction of compositional models in industrial GALS designs. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 204–218. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02658-4_18 CrossRefGoogle Scholar
- 5.Katoen, J.P., Wu, H.: Probabilistic model checking for uncertain scenario-aware data flow. ACM Trans. Embed. Comput. Sys. 22(1), 15:1–15:27 (2016)Google Scholar
- 6.Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety, dependability and performance analysis of extended AADL models. Comput. J. 54(5), 754–775 (2011)CrossRefGoogle Scholar
- 7.Eisentraut, C., Hermanns, H., Katoen, J.-P., Zhang, L.: A semantics for every GSPN. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 90–109. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38697-8_6 CrossRefGoogle Scholar
- 8.Hatefi, H., Hermanns, H.: Model checking algorithms for Markov automata. ECEASST 53 (2012)Google Scholar
- 9.Guck, D., Hatefi, H., Hermanns, H., Katoen, J.P., Timmer, M.: Analysis of timed and long-run objectives for Markov automata. LMCS 10(3) (2014)Google Scholar
- 10.Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and analysis of Markov reward automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 168–184. Springer, Cham (2014). doi: 10.1007/978-3-319-11936-6_13 Google Scholar
- 11.Hatefi, H., Braitling, B., Wimmer, R., Fioriti, L.M.F., Hermanns, H., Becker, B.: Cost vs. time in stochastic games and Markov automata. In: Li, X., Liu, Z., Yi, W. (eds.) SETTA 2015. LNCS, vol. 9409, pp. 19–34. Springer, Cham (2015). doi: 10.1007/978-3-319-25942-0_2 CrossRefGoogle Scholar
- 12.Butkova, Y., Wimmer, R., Hermanns, H.: Long-run rewards for Markov automata. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 188–203. Springer, Heidelberg (2017). doi: 10.1007/978-3-662-54580-5_11 CrossRefGoogle Scholar
- 13.Bruno, J.L., Downey, P.J., Frederickson, G.N.: Sequencing tasks with exponential service times to minimize the expected flow time or makespan. J. ACM 28(1), 100–113 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Quatmann, T., Junges, S., Katoen, J.P.: Markov automata with multiple objectives (2017). CoRR abs/1704.06648Google Scholar
- 15.Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22110-1_47 CrossRefGoogle Scholar
- 16.Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model checking. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 317–332. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33386-6_25 CrossRefGoogle Scholar
- 17.Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R.: A survey of multi-objective sequential decision-making. J. Artif. Intell. Res. 48, 67–113 (2013)MathSciNetzbMATHGoogle Scholar
- 18.Etessami, K., Kwiatkowska, M., Vardi, M.Y., Yannakakis, M.: Multi-objective model checking of Markov decision processes. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 50–65. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-71209-1_6 CrossRefGoogle Scholar
- 19.Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-objective verification for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 112–127. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19835-9_11 CrossRefGoogle Scholar
- 20.Bruyère, V., Filiot, E., Randour, M., Raskin, J.F.: Meet your expectations with guarantees: beyond worst-case synthesis in quantitative games. In: Proceeding of STACS. LIPIcs, vol. 25, pp. 199–213. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014)Google Scholar
- 21.Baier, C., Dubslaff, C., Klüppelholz, S.: Trade-off analysis meets probabilistic model checking. In: CSL-LICS, pp. 1:1–1:10. ACM (2014)Google Scholar
- 22.Brázdil, T., Chatterjee, K., Forejt, V., Kucera, A.: Trading performance for stability in Markov decision processes. J. Comput. Syst. Sci. 84, 144–170 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 23.Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Markov decision processes with multiple long-run average objectives. LMCS 10(1) (2014)Google Scholar
- 24.Basset, N., Kwiatkowska, M., Topcu, U., Wiltsche, C.: Strategy synthesis for stochastic games with multiple long-run objectives. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 256–271. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46681-0_22 Google Scholar
- 25.Teichteil-Königsbuch, F.: Path-constrained Markov decision processes: bridging the gap between probabilistic model-checking and decision-theoretic planning. In: Proceedings of ECAI. Frontiers in AI and Applications, vol. 242, pp. 744–749. IOS Press (2012)Google Scholar
- 26.Randour, M., Raskin, J.-F., Sankur, O.: Variations on the stochastic shortest path problem. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 1–18. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46081-8_1 Google Scholar
- 27.Junges, S., Jansen, N., Dehnert, C., Topcu, U., Katoen, J.-P.: Safety-constrained reinforcement learning for MDPs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 130–146. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49674-9_8 CrossRefGoogle Scholar
- 28.David, A., Jensen, P.G., Larsen, K.G., Legay, A., Lime, D., Sørensen, M.G., Taankvist, J.H.: On time with minimal expected cost!. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 129–145. Springer, Cham (2014). doi: 10.1007/978-3-319-11936-6_10 Google Scholar
- 29.Chen, T., Forejt, V., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: On stochastic games with multiple objectives. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 266–277. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40313-2_25 CrossRefGoogle Scholar
- 30.Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York (1994)CrossRefzbMATHGoogle Scholar
- 31.Neuhäußer, M.R., Stoelinga, M., Katoen, J.-P.: Delayed nondeterminism in continuous-time Markov decision processes. In: de Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 364–379. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00596-1_26 CrossRefGoogle Scholar
- 32.Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A storm is coming: a modern probabilistic model checker. In: Majumdar, R., Kučnak, V. (eds.) CAV 2017, Part I. LNCS, vol. 10426, pp. 592–600. Springer, Cham (2017)Google Scholar
- 33.Quatmann, T.: Multi-objective model checking of Markov automata. Master’s thesis, RWTH Aachen University (2016)Google Scholar
- 34.Haddad, S., Monmege, B.: Reachability in MDPs: refining convergence of value iteration. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol. 8762, pp. 125–137. Springer, Cham (2014). doi: 10.1007/978-3-319-11439-2_10 Google Scholar
- 35.Srinivasan, M.M.: Nondeterministic polling systems. Manag. Sci. 37(6), 667–681 (1991)CrossRefzbMATHGoogle Scholar
- 36.Timmer, M., Katoen, J.-P., Pol, J., Stoelinga, M.I.A.: Efficient modelling and generation of Markov automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 364–379. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32940-1_26 CrossRefGoogle Scholar
- 37.Pnueli, A., Zuck, L.: Verification of multiprocess probabilistic protocols. Distrib. Comput. 1(1), 53–72 (1986)CrossRefzbMATHGoogle Scholar