Automated Formal Synthesis of Digital Controllers for State-Space Physical Plants
Abstract
We present a sound and automated approach to synthesize safe digital feedback controllers for physical plants represented as linear, time-invariant models. Models are given as dynamical equations with inputs, evolving over a continuous state space and accounting for errors due to the digitization of signals by the controller. Our counterexample guided inductive synthesis (CEGIS) approach has two phases: We synthesize a static feedback controller that stabilizes the system but that may not be safe for all initial conditions. Safety is then verified either via BMC or abstract acceleration; if the verification step fails, a counterexample is provided to the synthesis engine and the process iterates until a safe controller is obtained. We demonstrate the practical value of this approach by automatically synthesizing safe controllers for intricate physical plant models from the digital control literature.
References
- 1.Control tutorials for MATLAB and SIMULINK. http://ctms.engin.umich.edu/
- 2.Abate, A., Bessa, I., Cattaruzza, D., Cordeiro, L.C., David, C., Kesseli, P., Kroening, D.: Sound and automated synthesis of digital stabilizing controllers for continuous plants. In: Hybrid Systems: Computation and Control (HSCC), pp. 197–206. ACM (2017)Google Scholar
- 3.Anta, A., Majumdar, R., Saha, I., Tabuada, P.: Automatic verification of control system implementations. In: EMSOFT, pp. 9–18 (2010)Google Scholar
- 4.Åström, K., Wittenmark, B.: Computer-Controlled Systems: Theory and Design. Prentice Hall Information and System Sciences Series. Prentice Hall, Upper Saddle River (1997)Google Scholar
- 5.Bessa, I., Ismail, H., Palhares, R., Cordeiro, L., Filho, J.E.C.: Formal non-fragile stability verification of digital control systems with uncertainty. IEEE Trans. Comput. 66(3), 545–552 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Brain, M., Tinelli, C., Rümmer, P., Wahl, T.: An automatable formal semantics for IEEE-754 floating-point arithmetic. In: ARITH, pp. 160–167. IEEE (2015)Google Scholar
- 7.Cattaruzza, D., Abate, A., Schrammel, P., Kroening, D.: Unbounded-time analysis of guarded LTI systems with inputs by abstract acceleration. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 312–331. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48288-9_18 CrossRefGoogle Scholar
- 8.David, C., Kroening, D., Lewis, M.: Using program synthesis for program analysis. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 483–498. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48899-7_34 CrossRefGoogle Scholar
- 9.de Bessa, I.V., Ismail, H., Cordeiro, L.C., Filho, J.E.C.: Verification of fixed-point digital controllers using direct and delta forms realizations. Des. Autom. Emb. Syst. 20(2), 95–126 (2016)CrossRefGoogle Scholar
- 10.Duggirala, P.S., Viswanathan, M.: Analyzing real time linear control systems using software verification. In: IEEE Real-Time Systems Symposium, pp. 216–226, December 2015Google Scholar
- 11.Fadali, S., Visioli, A.: Digital Control Engineering: Analysis and Design. Electronics & Electrical. Elsevier/Academic Press, Amsterdam/Cambridge (2009)Google Scholar
- 12.Fialho, I.J., Georgiou, T.T.: On stability and performance of sampled-data systems subject to wordlength constraint. IEEE Trans. Autom. Control 39(12), 2476–2481 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Franklin, G., Powell, D., Emami-Naeini, A.: Feedback Control of Dynamic Systems, 7th edn. Pearson, Upper Saddle River (2015)zbMATHGoogle Scholar
- 14.Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22110-1_30 CrossRefGoogle Scholar
- 15.Horn, R.A., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1990)Google Scholar
- 16.Itzhaky, S., Gulwani, S., Immerman, N., Sagiv, M.: A simple inductive synthesis methodology and its applications. In: OOPSLA, pp. 36–46. ACM (2010)Google Scholar
- 17.Kroening, D., Strichman, O.: Efficient computation of recurrence diameters. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 298–309. Springer, Heidelberg (2003). doi: 10.1007/3-540-36384-X_24 CrossRefGoogle Scholar
- 18.Li, G.: On pole and zero sensitivity of linear systems. IEEE Trans. Circuits Syst.-I: Fundam. Theory Appl. 44(7), 583–590 (1997)Google Scholar
- 19.Liberzon, D.: Hybrid feedback stabilization of systems with quantized signals. Automatica 39(9), 1543–1554 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Liu, J., Ozay, N.: Finite abstractions with robustness margins for temporal logic-based control synthesis. Nonlinear Anal.: Hybrid Syst. 22, 1–15 (2016)MathSciNetzbMATHGoogle Scholar
- 21.Mazo, M., Davitian, A., Tabuada, P.: PESSOA: a tool for embedded controller synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 566–569. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14295-6_49 CrossRefGoogle Scholar
- 22.Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall, Englewood Cliffs (1966)Google Scholar
- 23.Oliveira, V.A., Costa, E.F., Vargas, J.B.: Digital implementation of a magnetic suspension control system for laboratory experiments. IEEE Trans. Educ. 42(4), 315–322 (1999)CrossRefGoogle Scholar
- 24.Oudjida, A.K., Chaillet, N., Liacha, A., Berrandjia, M.L., Hamerlain, M.: Design of high-speed and low-power finite-word-length PID controllers. Control Theory Technol. 12(1), 68–83 (2014)MathSciNetCrossRefGoogle Scholar
- 25.Park, J., Pajic, M., Lee, I., Sokolsky, O.: Scalable verification of linear controller software. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 662–679. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49674-9_43 CrossRefGoogle Scholar
- 26.Picasso, B., Bicchi, A.: Stabilization of LTI systems with quantized state - quantized input static feedback. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 405–416. Springer, Heidelberg (2003). doi: 10.1007/3-540-36580-X_30 CrossRefGoogle Scholar
- 27.Ravanbakhsh, H., Sankaranarayanan, S.: Counter-example guided synthesis of control Lyapunov functions for switched systems. In: Conference on Decision and Control (CDC), pp. 4232–4239 (2015)Google Scholar
- 28.Ravanbakhsh, H., Sankaranarayanan, S.: Robust controller synthesis of switched systems using counterexample guided framework. In: EMSOFT, pp. 8:1–8:10. ACM (2016)Google Scholar
- 29.Roux, P., Jobredeaux, R., Garoche, P.: Closed loop analysis of control command software. In: HSCC, pp. 108–117. ACM (2015)Google Scholar
- 30.Solar-Lezama, A., Tancau, L., Bodík, R., Seshia, S.A., Saraswat, V.A.: Combinatorial sketching for finite programs. In: ASPLOS, pp. 404–415. ACM (2006)Google Scholar
- 31.Tan, R.H.G., Hoo, L.Y.H.: DC-DC converter modeling and simulation using state space approach. In: IEEE Conference on Energy Conversion, CENCON, pp. 42–47, October 2015Google Scholar
- 32.Wang, T.E., Garoche, P., Roux, P., Jobredeaux, R., Feron, E.: Formal analysis of robustness at model and code level. In: HSCC, pp. 125–134. ACM (2016)Google Scholar
- 33.Wu, J., Li, G., Chen, S., Chu, J.: Robust finite word length controller design. Automatica 45(12), 2850–2856 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 34.Zamani, M., Mazo, M., Abate, A.: Finite abstractions of networked control systems. In: IEEE CDC, pp. 95–100 (2014)Google Scholar