MightyL: A Compositional Translation from MITL to Timed Automata

  • Thomas Brihaye
  • Gilles Geeraerts
  • Hsi-Ming Ho
  • Benjamin Monmege
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10426)


Metric Interval Temporal Logic (MITL ) was first proposed in the early 1990s as a specification formalism for real-time systems. Apart from its appealing intuitive syntax, there are also theoretical evidences that make MITL a prime real-time counterpart of Linear Temporal Logic (LTL ). Unfortunately, the tool support for MITL verification is still lacking to this day. In this paper, we propose a new construction from MITL to timed automata via very-weak one-clock alternating timed automata. Our construction subsumes the well-known construction from LTL to Büchi automata by Gastin and Oddoux and yet has the additional benefits of being compositional and integrating easily with existing tools. We implement the construction in our new tool MightyL and report on experiments using Uppaal and LTSmin as back-ends.



We thank the reviewers of this article that help us clarify its overall presentation. The third author would like to thank Andreas Engelbredt Dalsgaard, Alfons Laarman and Jeroen Meijer for their technical help with opaal and LTSmin.


  1. 1.
    Abid, N., Dal-Zilio, S., Botlan, D.L.: A formal framework to specify and verify real-time properties on critical systems. Int. J. Crit. Comput.-Based Syst. 5(1/2), 4–30 (2014)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Inf. Comput. 104(1), 35–77 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Barnat, J., et al.: DiVinE 3.0 – an explicit-state model checker for multithreaded C & C++ programs. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 863–868. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39799-8_60 CrossRefGoogle Scholar
  6. 6.
    Bartocci, E., Bortolussi, L., Nenzi, L.: A temporal logic approach to modular design of synthetic biological circuits. In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013. LNCS, vol. 8130, pp. 164–177. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40708-6_13 CrossRefGoogle Scholar
  7. 7.
    Bersani, M.M., Rossi, M., San Pietro, P.: A tool for deciding the satisfiability of continuous-time metric temporal logic. Acta Inform. 53(2), 171–206 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bloem, R., Cimatti, A., Pill, I., Roveri, M.: Symbolic implementation of alternating automata. Int. J. Found. Comput. Sci. 18(4), 727–743 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bouyer, P., Colange, M., Markey, N.: Symbolic optimal reachability in weighted timed automata. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 513–530. Springer, Cham (2016). doi: 10.1007/978-3-319-41528-4_28 Google Scholar
  10. 10.
    Brihaye, T., Estiévenart, M., Geeraerts, G.: On MITL and alternating timed automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 47–61. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40229-6_4 CrossRefGoogle Scholar
  11. 11.
    Brihaye, T., Estiévenart, M., Geeraerts, G.: On MITL and alternating timed automata over infinite words. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 69–84. Springer, Cham (2014). doi: 10.1007/978-3-319-10512-3_6 Google Scholar
  12. 12.
    Bulychev, P.E., David, A., Larsen, K.G., Li, G.: Efficient controller synthesis for a fragment of MTL\(_{0,\infty }\). Acta Inform. 51(3–4), 165–192 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV2: an opensource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002). doi: 10.1007/3-540-45657-0_29 CrossRefGoogle Scholar
  14. 14.
    Claessen, K., Een, N., Sterin, B.: A circuit approach to LTL model checking. In: FMCAD 2013. IEEE (2013)Google Scholar
  15. 15.
    De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and applications. Commun. ACM 54(9), 69–77 (2011)CrossRefGoogle Scholar
  16. 16.
    Dokhanchi, A., Hoxha, B., Fainekos, G.: Formal requirement debugging for testing and verification of cyber-physical systems. Research report 1607.02549. arXiv (2016)Google Scholar
  17. 17.
    D’Souza, D., Matteplackel, R.: A clock-optimal hierarchical monitoring automaton construction for MITL. Research report 2013–1, IIS (2013).
  18. 18.
    Fu, J., Topcu, U.: Computational methods for stochastic control with metric interval temporal logic specifications. In: CDC 2015, pp. 7440–7447. IEEE (2015)Google Scholar
  19. 19.
    Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001). doi: 10.1007/3-540-44585-4_6 CrossRefGoogle Scholar
  20. 20.
    Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: PSTV 1995. pp. 3–18. Chapman & Hall (1995)Google Scholar
  21. 21.
    Hammer, M., Knapp, A., Merz, S.: Truly on-the-fly LTL model checking. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 191–205. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-31980-1_13 CrossRefGoogle Scholar
  22. 22.
    Hirshfeld, Y., Rabinovich, A.M.: Logics for real time: decidability and complexity. Fundam. Informaticae 62(1), 1–28 (2004)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Hirshfeld, Y., Rabinovich, A.: An expressive temporal logic for real time. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 492–504. Springer, Heidelberg (2006). doi: 10.1007/11821069_43 CrossRefGoogle Scholar
  24. 24.
    Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin: high-performance language-independent model checking. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46681-0_61 Google Scholar
  25. 25.
    Karaman, S.: Optimal planning with temporal logic specifications. Master’s thesis, Massachussetts Institute of Technology (2009)Google Scholar
  26. 26.
    Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. In: ISTCS 1997, pp. 147–158. IEEE (1997)Google Scholar
  27. 27.
    Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools Technol. Transfer 1(1–2), 134–152 (1997)CrossRefzbMATHGoogle Scholar
  28. 28.
    Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006). doi: 10.1007/11867340_20 CrossRefGoogle Scholar
  29. 29.
    Muller, D.E., Saoudi, A., Schupp, P.E.: Alternating automata, the weak monadic theory of the tree, and its complexity. In: Kott, L. (ed.) ICALP 1986. LNCS, vol. 226, pp. 275–283. Springer, Heidelberg (1986). doi: 10.1007/3-540-16761-7_77 CrossRefGoogle Scholar
  30. 30.
    Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal logic over finite words. In: Logical Methods in Computer Science, vol. 3, no. 1 (2007)Google Scholar
  31. 31.
    Plaku, E., Karaman, S.: Motion planning with temporal-logic specifications: progress and challenges. AI Communications 29, 151–162 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Pnueli, A.: The temporal logic of programs. In: FOCS 1977. pp. 46–57. IEEE (1977)Google Scholar
  33. 33.
    Raskin, J.F., Schobbens, P.Y.: The logic of event clocks: decidability, complexity and expressiveness. J. Automata Lang. Comb. 4(3), 247–282 (1999)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Rozier, K.Y., Vardi, M.Y.: A multi-encoding approach for LTL symbolic satisfiability checking. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 417–431. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21437-0_31 CrossRefGoogle Scholar
  35. 35.
    Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 231–237. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46681-0_20 Google Scholar
  36. 36.
    Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266. Springer, Heidelberg (1996). doi: 10.1007/3-540-60915-6_6 CrossRefGoogle Scholar
  37. 37.
    Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994. LNCS, vol. 863, pp. 694–715. Springer, Heidelberg (1994). doi: 10.1007/3-540-58468-4_191 CrossRefGoogle Scholar
  38. 38.
    de Wulf, M., Doyen, L., Maquet, N., Raskin, J.-F.: Antichains: alternative algorithms for LTL satisfiability and model-checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 63–77. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78800-3_6 CrossRefGoogle Scholar
  39. 39.
    Zhou, Y., Maity, D., Baras, J.S.: Timed automata approach for motion planning using metric interval temporal logic. Research report 1603.08246. arXiv (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Thomas Brihaye
    • 1
  • Gilles Geeraerts
    • 2
  • Hsi-Ming Ho
    • 1
  • Benjamin Monmege
    • 3
  1. 1.Université de MonsMonsBelgium
  2. 2.Université libre de BruxellesBrusselsBelgium
  3. 3.Aix Marseille Univ, CNRS, LIFMarseilleFrance

Personalised recommendations