Learning Predictive Categories Using Lifted Relational Neural Networks

  • Gustav ŠourekEmail author
  • Suresh Manandhar
  • Filip Železný
  • Steven Schockaert
  • Ondřej Kuželka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10326)


Lifted relational neural networks (LRNNs) are a flexible neural-symbolic framework based on the idea of lifted modelling. In this paper we show how LRNNs can be easily used to specify declaratively and solve learning problems in which latent categories of entities, properties and relations need to be jointly induced.



GS and FZ acknowledge support by project no. 17-26999S granted by the Czech Science Foundation. OK is supported by a grant from the Leverhulme Trust (RPG-2014-164). SS is supported by ERC Starting Grant 637277. Computational resources were provided by the CESNET LM2015042 and the CERIT Scientific Cloud LM2015085, provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures”.


  1. 1.
    Bader, S., Hitzler, P.: Dimensions of neural-symbolic integration-a structured survey. arXiv preprint cs/0511042 (2005)Google Scholar
  2. 2.
    Beltagy, I., Chau, C., Boleda, G., Garrette, D., Erk, K., Mooney, R.: Montague meets markov: deep semantics with probabilistic logical form. In: Proceedings of the *SEM, pp. 11–21 (2013)Google Scholar
  3. 3.
    Blockeel, H., Uwents, W.: Using neural networks for relational learning. In: ICML-2004 Workshop on Statistical Relational Learning and its Connection to Other Fields, pp. 23–28 (2004)Google Scholar
  4. 4.
    Cohen, W.W.: Tensorlog: a differentiable deductive database. arXiv preprint arXiv:1605.06523 (2016)
  5. 5.
    Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis: Foundations and Applications. LNCS (LNAI), vol. 3626. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  6. 6.
    Hájek, P.: Metamathematics of Fuzzy Logic, vol. 4. Springer, Dordrecht (1998)zbMATHGoogle Scholar
  7. 7.
    Kok, S., Domingos, P.: Statistical predicate invention. In: Proceedings of the 24th International Conference on Machine Learning, pp. 433–440 (2007)Google Scholar
  8. 8.
    McCray, A.T.: An upper-level ontology for the biomedical domain. Comp. Funct. Genomics 4(1), 80–84 (2003)CrossRefGoogle Scholar
  9. 9.
    Miclet, L., Bayoudh, S., Delhay, A.: Analogical dissimilarity: definition, algorithms and two experiments in machine learning. J. Artif. Intell. Res. 32, 793–824 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Mitchell, T.M., Cohen, W.W., Hruschka Jr., E.R., Talukdar, P.P., Betteridge, J., Carlson, A., Mishra, B.D., Gardner, M., Kisiel, B., Krishnamurthy, J., Lao, N., Mazaitis, K., Mohamed, T., Nakashole, N., Platanios, E.A., Ritter, A., Samadi, M., Settles, B., Wang, R.C., Wijaya, D.T., Gupta, A., Chen, X., Saparov, A., Greaves, M., Welling, J.: Never-ending learning. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25–30, 2015, Austin, Texas, USA, pp. 2302–2310 (2015)Google Scholar
  11. 11.
    Daniel, N.O., Stern, J., Wilkie, O., Stob, M., Smith, E.E.: Default probability. Cogn. Sci. 15(2), 251–269 (1991)CrossRefGoogle Scholar
  12. 12.
    Prade, H., Richard, G.: Reasoning with logical proportions. In: Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (2010)Google Scholar
  13. 13.
    Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)CrossRefGoogle Scholar
  14. 14.
    Rocktäschel, T., Riedel, S.: Learning knowledge base inference with neural theorem provers. In: NAACL Workshop on Automated Knowledge Base Construction (AKBC) (2016)Google Scholar
  15. 15.
    Rummel, R.J.: The dimensionality of nations project: attributes of nations and behavior of nations dyads, pp. 1950–1965. Number 5409. Inter-University Consortium for Political Research (1976)Google Scholar
  16. 16.
    Šourek, G., Aschenbrenner, V., Železný, F., Kuželka, O.: Lifted relational neural networks. In: Proceedings of the NIPS Workshop on Cognitive Computation: Integrating Neural and Symbolic Approaches (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Gustav Šourek
    • 1
    Email author
  • Suresh Manandhar
    • 2
  • Filip Železný
    • 1
  • Steven Schockaert
    • 3
  • Ondřej Kuželka
    • 3
  1. 1.Czech Technical UniversityPragueCzech Republic
  2. 2.Department of Computer ScienceUniversity of YorkYorkUK
  3. 3.School of CS and InformaticsCardiff UniversityCardiffUK

Personalised recommendations