Norway Spruce Fine Roots and Fungal Hyphae Grow Deeper in Forest Soils After Extended Drought

  • Isabella BørjaEmail author
  • Douglas L. Godbold
  • Jan Světlík
  • Nina E. Nagy
  • Roman Gebauer
  • Josef Urban
  • Daniel Volařík
  • Holger Lange
  • Paal Krokene
  • Petr Čermák
  • Toril D. Eldhuset
Conference paper
Part of the Sustainability in Plant and Crop Protection book series (SUPP)


Global warming will most likely lead to increased drought stress in forest trees. We wanted to describe the adaptive responses of fine roots and fungal hyphae, at different soil depths, in a Norway spruce stand to long-term drought stress induced by precipitation exclusion over two growing seasons. We used soil cores, minirhizotrons and nylon meshes to estimate growth, biomass and distribution of fine roots and fungal hyphae at different soil depths. In control plots fine roots proliferated in upper soil layers, whereas in drought plots there was no fine root growth in upper soil layers and roots mostly occupied deeper soil layers. Fungal hyphae followed the same pattern as fine roots, with the highest biomass in deeper soil layers in drought plots. We conclude that both fine roots and fungal hyphae respond to long-term drought stress by growing into deeper soil layers.


Fine root biomass Hyphal biomass Hyphal mesh Minirhizotrons Picea abies 



We thank Jaromíra Dreslerová for excellent technical assistance. This work was funded by Iceland, Liechtenstein and Norway through the EEA Financial Mechanism, the Norwegian Financial Mechanism (grant no. A/CZ0046/2/0009), Mendel University in Brno (grant IGA 73/2013), the EEA project FRAMEADAPT EHP-CZ02-OV-1-044-01-2014, and the project “Indicators of Tree Vitality” (Reg. No. CZ.1.07/2.3.00/20.0265), co-financed by the European Social Fund and the Czech Republic. We also acknowledge contribution by COST Actions FP1106 “STReESS” and FP1305 “BioLink”.


  1. Aber, J. D., Melillo, J. M., Nadelhoffer, K. J., McClaugherty, C. A., & Pastor, J. (1985). Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen vailability: a comparison of two methods. Oecologia, 66, 317–321.CrossRefPubMedGoogle Scholar
  2. Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684.CrossRefGoogle Scholar
  3. Andreassen, K., Solberg, S., Tveito, O. E., & Lystad, S. L. (2006). Regional differences in climatic responses of Norway spruce (Picea abies L. Karst) growth in Norway. Forest Ecology and Management, 222, 211–221.CrossRefGoogle Scholar
  4. Borken, W., Savage, K., Davidson, E. A., & Trumbore, S. E. (2006). Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Global Change Biology, 12, 177–193.CrossRefGoogle Scholar
  5. Bréda, N., Huc, R., Granier, A., & Dreyer, E. (2006). Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63, 625–644.CrossRefGoogle Scholar
  6. Brownlee, C., Duddridge, J. A., Malibari, A., & Read, D. J. (1983). The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant and Soil, 71, 433–443.CrossRefGoogle Scholar
  7. Brunner, I., Herzog, C., Dawes, M. A., Arend, M., & Sperisen, C. (2015). How tree roots respond to drought. Frontiers in Plant Science, 6, 547.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Buée, M., Vairelles, D., & Garbaye, J. (2005). Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus sylvatica) forest subjected to two thinning regimes. Mycorrhiza, 15, 235–245.CrossRefPubMedGoogle Scholar
  9. Čermák, J., Deml, M., & Penka, M. (1973). A new method of sap flow rate determination in trees. Biologia Plantarum (Prague), 15, 171–178.CrossRefGoogle Scholar
  10. Čermák, J., Kučera, J., & Nadezhdina, N. (2004). Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees, 18, 529–546.CrossRefGoogle Scholar
  11. Ditmarová, L., Kurjak, D., Palmroth, S., Kmeť, J., & Střelcová, K. (2010). Physiological responses of Norway spruce (Picea abies) seedlings to drought stress. Tree Physiology, 30, 205–213.CrossRefPubMedGoogle Scholar
  12. Ekblad, A., Wallander, H., Godbold, D. L., Cruz, C., Johnson, D., et al. (2013). The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: Role in carbon cycling. Plant and Soil, 366, 1–27.CrossRefGoogle Scholar
  13. Ekelund, F., Rønn, R., & Christensen, S. (2001). Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biology and Biochemistry, 33, 475–481.CrossRefGoogle Scholar
  14. Eldhuset, T. D., Nagy, N. E., Volařík, D., Børja, I., Gebauer, R., et al. (2013). Drought affects tracheid structure, dehydrin expression, and above- and belowground growth in 5-year-old Norway spruce. Plant and Soil, 366, 305–320.CrossRefGoogle Scholar
  15. Gaul, D., Hertel, D., Borken, W., Matzner, E., & Leuschner, C. (2008). Effects of experimental drought on the fine root system of mature Norway spruce. Forest Ecology and Management, 256, 1151–1159.CrossRefGoogle Scholar
  16. Gebauer, R., Volařík, D., Urban, J., Børja, I., Nagy, N. E., et al. (2011). Effect of thinning on anatomical adaptations of Norway spruce needles. Tree Physiology, 31, 1103–1113.CrossRefPubMedGoogle Scholar
  17. Gebauer, R., Volařík, D., Urban, J., Børja, I., Nagy, N. E., et al. (2012). Effects of different light conditions on the xylem structure of Norway spruce needles. Trees - Structure and Function, 26, 1079–1089.CrossRefGoogle Scholar
  18. Gebauer, R., Volařík, D., Urban, J., Børja, I., Nagy, N. E., et al. (2015). Effects of prolonged drought on the anatomy of sun and shade needles in young Norway spruce trees. Ecology and Evolution, 5, 4989–4998.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hendrick, R. L., & Pregitzer, K. S. (1993). The dynamics of fine-root length, biomass, and nitrogen-content in 2 northern hardwood ecosystems. Canadian Journal of Forest Research, 23, 2507–2520.CrossRefGoogle Scholar
  20. Hirano, Y., Noguchi, K., Ohashi, M., Hishi, T., Makita, N., et al. (2009). A new method for placing and lifting root meshes for estimating fine root production in forest ecosystems. Plant Root, 3, 26–31.CrossRefGoogle Scholar
  21. IPCC. (2013). IPCC fifth assessment report. Weather, 68, 310–310.CrossRefGoogle Scholar
  22. Jackson, R. B., Mooney, H. A., & Schulze, E. D. (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences, USA, 94, 7362–7366.CrossRefGoogle Scholar
  23. Joslin, J. D., Wolfe, M. H., & Hanson, P. J. (2000). Effects of altered water regimes on forest root systems. New Phytologist, 147, 117–129.CrossRefGoogle Scholar
  24. Konôpka, B., & Lukáč, M. (2013). Moderate drought alters biomass and depth distribution of fine roots in Norway spruce. Forest Pathology, 43, 115–123.CrossRefGoogle Scholar
  25. Leuschner, C., Backes, K., Hertel, D., Schipka, F., Schmitt, U., et al. (2001). Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. Forest Ecology and Management, 149, 33–46.CrossRefGoogle Scholar
  26. Leuschner, C., Hertel, D., Schmid, I., Koch, O., Muhs, A., & Holscher, D. (2004). Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant and Soil, 258, 43–56.CrossRefGoogle Scholar
  27. Lukáč, M., & Godbold, D. L. (2010). Fine root biomass and turnover in southern taiga estimated by root inclusion nets. Plant and Soil, 331, 505–513.CrossRefGoogle Scholar
  28. Lyr, H., & Hoffmann, G. (1967). Growth rate and growth periodicity of tree roots. International Review of Forest Research, 2, 181–206.CrossRefGoogle Scholar
  29. McDowell, N. G., & Sevanto, S. (2010). The mechanisms of carbon starvation: How, when, or does it even occur at all? New Phytologist, 186, 264–266.CrossRefPubMedGoogle Scholar
  30. McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., et al. (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719–739.CrossRefPubMedGoogle Scholar
  31. Meier, I. C., & Leuschner, C. (2008). Belowground drought response of European beech: Fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Global Change Biology, 14, 2081–2095.CrossRefGoogle Scholar
  32. Moser, B., Kipfer, T., Richter, S., Egli, S., & Wohlgemuth, T. (2015). Drought resistance of Pinus sylvestris seedlings conferred by plastic root architecture rather than ectomycorrhizal colonisation. Annals of Forest Science, 72, 301–309.CrossRefGoogle Scholar
  33. Muhsin, T. M., & Zwiazek, J. J. (2002). Ectomycorrhizas increase apoplastic water transport and root hydraulic conductivity in Ulmus americana seedlings. New Phytologist, 153, 153–158.CrossRefGoogle Scholar
  34. Plamboeck, A. H., Dawson, T. E., Egerton-Warburton, L. M., North, M., Bruns, T. D., & Querejeta, J. I. (2007). Water transfer via ectomycorrhizal fungal hyphae to conifer seedlings. Mycorrhiza, 17, 439–447.CrossRefPubMedGoogle Scholar
  35. Pregitzer, K. S., Hendrick, R. L., & Fogel, R. (1993). The demography of fine roots in response to patches of water and nitrogen. New Phytologist, 125, 575–580.CrossRefGoogle Scholar
  36. Roudier, P., Andersson, J. C. M., Donnelly, C., Feyen, L., Greuell, W., & Ludwig, F. (2016). Projections of future floods and hydrological droughts in Europe under a +2 degrees C global warming. Climatic Change, 135, 341–355.CrossRefGoogle Scholar
  37. Santantonio, D., & Hermann, R. K. (1985). Standing crop, production, and turnover of fine roots on dry, moderate, and wet sites of mature douglas-fir in western Oregon. Annales des Sciences Forestières, 42, 113–142.CrossRefGoogle Scholar
  38. Schall, P., Lödige, C., Beck, M., & Ammer, C. (2012). Biomass allocation to roots and shoots is more sensitive to shade and drought in European beech than in Norway spruce seedlings. Forest Ecology and Management, 266, 246–253.CrossRefGoogle Scholar
  39. Sevanto, S., McDowell, N. G., Dickman, L. T., Pangle, R., & Pockman, W. T. (2014). How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell and Environment, 37, 153–161.CrossRefGoogle Scholar
  40. Sohn, J. A., Kohler, M., Gessler, A., & Bauhus, J. (2012). Interactions of thinning and stem height on the drought response of radial stem growth and isotopic composition of Norway spruce (Picea abies). Tree Physiology, 32, 1199–1213.CrossRefPubMedGoogle Scholar
  41. Solberg, S. (2004). Summer drought: A driver for crown condition and mortality of Norway spruce in Norway. Forest Pathology, 34, 93–104.Google Scholar
  42. Steele, S. J., Gower, S. T., Vogel, J. G., & Norman, J. M. (1997). Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Physiology, 17, 577–587.CrossRefPubMedGoogle Scholar
  43. Vogt, K. A., Vogt, D. J., Palmiotto, P. A., Boon, P., Ohara, J., & Asbjornsen, H. (1996). Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant and Soil, 187, 159–219.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Isabella Børja
    • 1
    Email author
  • Douglas L. Godbold
    • 2
  • Jan Světlík
    • 3
  • Nina E. Nagy
    • 1
  • Roman Gebauer
    • 4
  • Josef Urban
    • 5
    • 4
  • Daniel Volařík
    • 4
  • Holger Lange
    • 1
  • Paal Krokene
    • 1
  • Petr Čermák
    • 6
  • Toril D. Eldhuset
    • 1
  1. 1.Norwegian Institute of Bioeconomy ResearchÅsNorway
  2. 2.BOKU ViennaViennaAustria
  3. 3.Centre MendelGlobe – Global Climate Change and Managed EcosystemsMendel University in BrnoBrnoCzech Republic
  4. 4.Departement of Forest Botany, Dendrology and GeobiocoenologyMendel University in BrnoBrnoCzech Republic
  5. 5.Siberian Federal UniversityKrasnoyarskRussia
  6. 6.Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic

Personalised recommendations