Ectomycorrhizal Fungal Responses to Forest Liming and Wood Ash Addition: Review and Meta-analysis

  • Rasmus KjøllerEmail author
  • Carla Cruz-Paredes
  • Karina E. Clemmensen
Conference paper
Part of the Sustainability in Plant and Crop Protection book series (SUPP)


Large-scale liming and wood ash addition are common practices to mitigate soil and water acidification in temperate and boreal forests. In addition, wood ash recycles nutrients removed at harvest to the forest ecosystem. Both liming and wood ash applications typically increase soil pH by 1–2 units. Therefore, they affect a range of soil processes and organisms including ectomycorrhizal (EM) fungi which are vital for the nutrition of many tree species. Here we review field studies reporting the effects of lime and wood ash amendments on EM fungi. We systematically compiled studies where known amounts of ash or lime were distributed to plots paired with comparable control plots, and where mycorrhizal variables were recorded. For a subset of studies meeting explicit criteria, we performed meta-analyses using overall mycorrhizal abundance, species richness or the abundance of specific fungal taxa as response variables. Guided by availability of data, the focus is on Nordic coniferous forests. Although the reviewed field studies varied widely in dosage and experimental setup they clearly demonstrated that liming and wood ash amendments influence EM fungal species composition. Across studies, species belonging to the lineages Cortinarius and Russula-lactarius (Basidiomycota), particularly Russula ochroleuca, decreased in relative abundance, while species within the Tuber-helvella (Ascomycota) increased. Particular species within the Amphinema-tylospora lineage responded in opposite directions; Tylospora fibrillosa decreased in relation to the control, while Amphinema byssoides increased. The significant changes in species or clade abundances were in the range of 5–20% compared to non-treated plots. In contrast, neither the belowground mycorrhizal biomass nor species richness responded to liming or wood ash applications. We conclude that liming and wood ash amendments cause consistent EM fungal species dominance shifts, but that a high EM fungal biomass and species and phylogenetic richness is maintained on the tree roots. Given the large dispersal potential of many EM fungi, we therefore suggest that these treatments at normal recommended dosages do not pose any immediate threats to EM fungal biodiversity, at least not when applied at relatively small spatial scales. Whether the observed dominance shifts among EM fungal clades have consequences for the functioning of the EM fungal guild, e.g. in relation to nutrient cycling or tree nutrition, is an important question that should be further investigated.


Ectomycorrhizal fungi Liming Wood ash Biomass Species richness Fungal community composition 



This work was supported by a grant from the Swedish Forest Agency, (grant no 91/06 4.43/HK) and by the “Center for Bioenergy Recycling- ASHBACK” project, funded by the Danish Council for Strategic Research (grant no 0603-00587B).


  1. Agerer, R. (1990). Impacts of artificial acid-rain and liming on fruitbody production of ectomycorrhizal fungi. Agriculture, Ecosystems and Environment, 28, 3–8.CrossRefGoogle Scholar
  2. Agerer, R. (2001). Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza, 11, 107–114.CrossRefGoogle Scholar
  3. Agerer, R., Brand, F., & Treu, R. (1989). Systematic aspects of ectomycorrhizas. In Proceedings of the 10th Congress of European Mycologists, Tallinn, Estonia.Google Scholar
  4. Agerer, R., Taylor, A. F. S., & Treu, R. (1998). Effects of acid irrigation and liming on the production of fruit bodies by ectomycorrhizal fungi. Plant and Soil, 199, 83–89.CrossRefGoogle Scholar
  5. Andersson, S., Nilsson, I., & Valeur, I. (1999). Influence of dolomitic lime on DOC and DON leaching in a forest soil. Biogeochemistry, 47, 297–317.CrossRefGoogle Scholar
  6. Antibus, R. K., & Linkins, A. E. (1992). Effects of liming a red pine forest floor on mycorrhizal numbers and mycorrhizal and soil acid–phosphatase activities. Soil Biology and Biochemistry, 24, 479–487.CrossRefGoogle Scholar
  7. Arnolds, E. (1991). Decline of ectomycorrhizal fungi in Europe. Agriculture, Ecosystems and Environment, 35, 209–244.CrossRefGoogle Scholar
  8. Augusto, L., Bakker, M. R., & Meredieu, C. (2008). Wood ash applications to temperate forest ecosystems – Potential benefits and drawbacks. Plant and Soil, 306, 181–198.CrossRefGoogle Scholar
  9. Baar, J., Horton, T. R., Kretzer, A. M., & Bruns, T. D. (1999). Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand–replacing wildfire. New Phytologist, 143, 409–418.CrossRefGoogle Scholar
  10. Bakker, M. R., Garbaye, J., & Nys, C. (2000). Effect of liming on the ectomycorrhizal status of oak. Forest Ecology & Managment, 126, 121–131.Google Scholar
  11. Bending, G. D., & Read, D. J. (1995). The structure and function of the vegetative mycelium of ectomycorrhizal plants VI. Activities of nutrient mobilizing enzymes in birch litter colonized by Paxillus involutus (Fr.) Fr. New Phytologist, 130, 411–417.CrossRefGoogle Scholar
  12. Binkley, D., & Hogberg, P. (1997). Does atmospheric deposition of nitrogen threaten Swedish forests? Forest Ecology and Management, 92, 119–152.CrossRefGoogle Scholar
  13. Bödeker, I. T. M., Clemmensen, K. E., de Boer, W., Martin, F., Olson, A., & Lindahl, B. D. (2014). Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytologist, 203, 245–256.CrossRefPubMedGoogle Scholar
  14. Börja, I., & Nilsen, P. (2009). Long term effect of liming and fertilization on ectomycorrhizal colonization and tree growth in old Scots pine (Pinus sylvestris L.) stands. Plant and Soil, 314, 109–119.CrossRefGoogle Scholar
  15. Brandrud, T. E., Bakkestuen, V., Aarrestad, P. A., & Direktoratet for naturforvaltning. (2001). Terrengkalking i Suldal, Rogaland – Effekter på vegetasjon og sopp. In: Terrengkalkningsprosjektet. Årsrapport 2000. Terrengkalking for å avgifte surt overfladevann. DN Notat, 2001–2004, 57–76.Google Scholar
  16. Brandrud, T.E., Bakkestuen, V., Bendiksen, E., Eilertsen, O., Aarrestad, P.A. (2003). Terrengkalking i Gjerstad, Aust–Agder. Effekter på skogvegetasjon og sopp, NINA Fagrapport, p. 75.Google Scholar
  17. Cairney, J. W. G., & Meharg, A. A. (1999). Influences of anthropogenic pollution on mycorrhizal fungal communities. Environmental Pollution, 106, 169–182.CrossRefPubMedGoogle Scholar
  18. Clair, T. A., & Hindar, A. (2005). Liming for the mitigation of acid rain effects in freshwaters: A review of recent results. Environmental Reviews, 13, 91–128.CrossRefGoogle Scholar
  19. Clemmensen, K. E., Finlay, R. D., Dahlberg, A., Stenlid, J., Wardle, D. A., & Lindahl, B. D. (2015). Carbon sequestration is related to mycorrhizal fungal community shifts during long–term succession in boreal forests. New Phytologist, 205, 1525–1536.CrossRefPubMedGoogle Scholar
  20. Cox, F., Barsoum, N., Lilleskov, E. A., & Bidartondo, M. I. (2010). Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecology Letters, 13, 1103–1113.CrossRefPubMedGoogle Scholar
  21. Dumbrell, A. J., Nelson, M., Helgason, T., Dytham, C., & Fitter, A. H. (2010). Relative roles of niche and neutral processes in structuring a soil microbial community. ISME Journal, 4, 337–345.CrossRefPubMedGoogle Scholar
  22. Erland, S., & Söderström, B. (1991). Effects of lime and ash treatments on ectomycorrhizal infection of Pinus sylvestris L. seedlings planted in a pine forest. Scandinavian Journal of Forest Research, 6, 519–526.CrossRefGoogle Scholar
  23. Gupta, U. C., Jame, Y. W., Campbell, C. A., Leyshon, A. J., & Nicholaichuk, W. (1985). Boron toxicity and deficiency – A review. Canadian Journal of Soil Science, 65, 381–409.CrossRefGoogle Scholar
  24. Hedges, L. V., Gurevitch, J., & Curtis, P. S. (1999). The meta–analysis of response ratios in experimental ecology. Ecology, 80, 1150–1156.CrossRefGoogle Scholar
  25. Hibbett, D. S., Gilbert, L. B., & Donoghue, M. J. (2000). Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature, 407, 506–508.CrossRefPubMedGoogle Scholar
  26. Högberg, M. N., Högberg, P., & Myrold, D. D. (2007). Is microbial community composition in boreal forest soils determined by pH, C–to–N ratio, the trees, or all three? Oecologia, 150, 590–601.CrossRefPubMedGoogle Scholar
  27. Horton, T. R., & Bruns, T. D. (2001). The molecular revolution in ectomycorrhizal ecology: peeking into the black–box. Molecular Ecology, 10, 1855–1871.CrossRefPubMedGoogle Scholar
  28. Huettl, R. F., & Zoettl, H. W. (1993). Liming as a mitigation tool in Germany declining forests – Reviewing results from former and recent trials. Forest Ecology and Management, 61, 325–338.CrossRefGoogle Scholar
  29. Hung, L., & Trappe, J. M. (1983). Growth variation between and within species of ectomycorrhizal fungi in response to pH in vitro. Mycologia, 75, 234–241.CrossRefGoogle Scholar
  30. Ingerslev, M., Skov, S., Sevel, L., & Pedersen, L. B. (2011). Element budgets of forest biomass combustion and ash fertilisation – A Danish case–study. Biomass Bioenergy, 35, 2697–2704.CrossRefGoogle Scholar
  31. Jacobson, S., Lundstrom, H., Nordlund, S., Sikstrom, U., & Pettersson, F. (2014). Is tree growth in boreal coniferous stands on mineral soils affected by the addition of wood ash? Scandinavian Journal of Forest Research, 29, 675–685.CrossRefGoogle Scholar
  32. Jacobsson, S. (1993). Inventering av svampfloran i kalkade provrutor på Hallandsåsen. Jordstjärnan, 14, 13–22.Google Scholar
  33. Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., et al. (2007). How strongly can forest management influence soil carbon sequestration? Geoderma, 137, 253–268.CrossRefGoogle Scholar
  34. Jonsson, T., Kokalj, S., Finlay, R., & Erland, S. (1999). Ectomycorrhizal community structure in a limed spruce forest. Mycological Research, 103, 501–508.CrossRefGoogle Scholar
  35. Kårén, O., & Nylund, J. E. (1996). Effects of N–free fertilization on ectomycorrhiza community structure in Norway spruce stands in Southern Sweden. Plant and Soil, 181, 295–305.CrossRefGoogle Scholar
  36. Kjøller, R., & Clemmensen, K. E. (2009). Belowground ectomycorrhizal fungal communities respond to liming in three southern Swedish coniferous forest stands. Forest Ecology and Management, 257, 2217–2225.CrossRefGoogle Scholar
  37. Kjøller, R., Nilsson, L. O., Hansen, K., Schmidt, I. K., Vesterdal, L., & Gundersen, P. (2012). Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand–scale nitrogen deposition gradient. New Phytologist, 194, 278–286.CrossRefPubMedGoogle Scholar
  38. Klavina, D., Pennanen, T., Gaitnieks, T., Velmala, S., Lazdins, A., Lazdina, D., et al. (2016). The ectomycorrhizal community of conifer stands on peat soils 12 years after fertilization with wood ash. Mycorrhiza, 26, 153–160.CrossRefPubMedGoogle Scholar
  39. Kreutzer, K. (1995). Effects of forest liming on soil processes. Plant and Soil, 169, 447–470.CrossRefGoogle Scholar
  40. Kyaschenko, J., Clemmensen, K. E., Hagenbo, A., Karltun, E., & Lindahl, B. D. (2017). Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands. ISME Journal, 11, 863–874.CrossRefPubMedGoogle Scholar
  41. Larsson, P. E., Uggla, E., & Westling, O. (2001). Långsiktige effekter av skogsmarkskalkning på mark– och markvattenkemi. In: IVL Rapport. IVL Svenska Miljöinstitutet AB, p. 52.Google Scholar
  42. Leake, J. R., Read, D. J., Wicklow, D. T., & Söderström, B. (1997). Mycorrhizal fungi in terrestrial habitats. In Environmental and Microbial Relationships (pp. 281–301). Berlin: Springer.Google Scholar
  43. Lehto, T. (1994a). Effects of liming and boron fertilization on mycorrhizas of Picea abies. Plant and Soil, 163, 65–68.CrossRefGoogle Scholar
  44. Lehto, T. (1994b). Effects of soil pH and calcium on mycorrhizas of Picea abies. Plant and Soil, 163, 69–75.CrossRefGoogle Scholar
  45. Lehto, T., & Malkonen, E. (1994). Effects of liming and boron fertilization on boron uptake of Picea abies. Plant and Soil, 163, 55–64.CrossRefGoogle Scholar
  46. Lilleskov, E. A., Fahey, T. J., & Lovett, G. M. (2001). Ectomycorrhizal fungal aboveground community change over an atmospheric nitrogen deposition gradient. Ecological Applications, 11, 397–410.CrossRefGoogle Scholar
  47. Lilleskov, E. A., Fahey, T. J., Horton, T. R., & Lovett, G. M. (2002a). Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology, 83, 104–115.CrossRefGoogle Scholar
  48. Lilleskov, E. A., Hobbie, E. A., & Fahey, T. J. (2002b). Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytologist, 154, 219–231.CrossRefGoogle Scholar
  49. Lindahl, B. D., & Tunlid, A. (2015). Ectomycorrhizal fungi – Potential organic matter decomposers, yet not saprotrophs. New Phytologist, 205, 1443–1447.CrossRefPubMedGoogle Scholar
  50. LoBuglio, K. F. (1999). Cenococcum. In Ectomycorrhizal fungi. Key general in profile (pp. 287–309). Berlin: Springer.CrossRefGoogle Scholar
  51. Löfgren, S., Zetterberg, T., Larsson, P.-E., Cory, N., Klarqvist, M., Kronnäs, V., et al. (2008). Skogsmarkskalkningens effekter på kemin i mark, grundvatten och ytvatten i SKOKAL–områdena 16 år efter behandling, Rapport 16. Jönköping: Skogsstyrelsens förlag.Google Scholar
  52. Lundström, U. S., Bain, D. C., Taylor, A. F. S., & van Hees, P. A. W. (2003a). Effects of acidification and its mitigation with lime and wood ash on forest soil processes: A review. Water, Air, Soil Pollution Focus, 3, 5–28.CrossRefGoogle Scholar
  53. Lundström, U. S., Bain, D. C., Taylor, A. F. S., van Hees, P. A. W., Geibe, C. E., Holmström, S. J. M., et al. (2003b). Effects of acidification and its mitigation with lime and wood ash on forest soil processes in southern Sweden. A joint multidisciplinary study. Water, Air Soil Pollution Focus, 3, 167–188.CrossRefGoogle Scholar
  54. Mahmood, S., Finlay, R. D., Wallander, H., & Erland, S. (2002). Ectomycorrhizal colonisation of roots and ash granules in a spruce forest treated with granulated wood ash. Forest Ecology and Management, 160, 65–74.CrossRefGoogle Scholar
  55. Majdi, H., & Viebke, C. R. (2004). Effects of fertilization with dolomite lime plus PK or wood ash on root distribution and morphology in a Norway spruce stand in Southwest Sweden. Forest Science, 50, 802–809.Google Scholar
  56. Majdi, H., Truus, L., Johansson, U., Nylund, J. E., & Wallander, H. (2008). Effects of slash retention and wood ash addition on fine root biomass and production and fungal mycelium in a Norway spruce stand in SW Sweden. Forest Ecology and Management, 255, 2109–2117.CrossRefGoogle Scholar
  57. Mottonen, M., Lehto, T., & Aphalo, P. J. (2001). Growth dynamics and mycorrhizas of Norway spruce (Picea abies) seedlings in relation to boron supply. Trees–Structure and Function, 15, 319–326.CrossRefGoogle Scholar
  58. Nowotny, I., Dahne, J., Klingelhofer, D., & Rothe, G. M. (1998). Effect of artificial soil acidification and liming on growth and nutrient status of mycorrhizal roots of Norway spruce (Picea abies [L.] Karst.) Plant and Soil, 199, 29–40.CrossRefGoogle Scholar
  59. Nyberg, L., Lundstrom, U., Söderberg, U., Danielsson, R., & van Hees, P. (2001). Does soil acidification affect spruce needle chemical composition and tree growth? Water, Air, Soil Pollution Focus, 1, 241–263.CrossRefGoogle Scholar
  60. Palmberger, B., Egnell, G. (2006). Miljöeffekter av skogsbränsleuttag och askåterföring i Sverige. En syntes av Energimyndighetens forskningsprogram 1997 till 2004. Statens Energimyndighet.Google Scholar
  61. Persson, H., & Ahlström, K. (1994). The effects of alkalizing compounds on fine–root growth in a Norway spruce stand in Southwest Sweden. Journal of Environmental Science and Health, 29, 803–820.Google Scholar
  62. Qian, X. M., Kottke, I., & Oberwinkler, F. (1998). Influence of liming and acidification on the activity of the mycorrhizal communities in a Picea abies (L.) Karst. stand. Plant and Soil, 199, 99–109.CrossRefGoogle Scholar
  63. Read, D. J., & Perez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems: A journey towards relevance? New Phytologist, 157, 475–492.CrossRefGoogle Scholar
  64. Reid, C., & Watmough, S. A. (2014). Evaluating the effects of liming and wood–ash treatment on forest ecosystems through systematic meta–analysis. Canadian Journal of Forest Research, 44, 867–885.CrossRefGoogle Scholar
  65. Rineau, F., & Garbaye, J. (2009a). Does forest liming impact the enzymatic profiles of ectomycorrhizal communities through specialized fungal symbionts. Mycorrhiza, 19, 493–500.CrossRefPubMedGoogle Scholar
  66. Rineau, F., & Garbaye, J. (2009b). Effects of liming on ectomycorrhizal community structure in relation to soil horizons and tree hosts. Fungal Ecology, 2, 103–109.CrossRefGoogle Scholar
  67. Rineau, F., & Garbaye, J. (2010). Effects of liming on potential oxalate secretion and iron chelation of beech ectomycorrhizal root tips. Microbial Ecology, 60, 331–339.Google Scholar
  68. Rineau, F., Maurice, J. P., Nys, C., Voiry, H., & Garbaye, J. (2010). Forest liming durably impact the communities of ectomycorrhizas and fungal epigeous fruiting bodies. Annals of Forest Science, 67, 1–12.CrossRefGoogle Scholar
  69. Rosenberg, M. S., Adams, D. C., & Gurevitch, J. (1999). MetaWin: Statistical Software for Meta–Analysis, Version 2.0. Sunderland: Sinauer Associates.Google Scholar
  70. Rousk, J., Baath, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., et al. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, 4, 1340–1351.CrossRefPubMedGoogle Scholar
  71. R–project. (2014). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  72. Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis. London: Academic Press.Google Scholar
  73. Stendell, E. R., Horton, T. R., & Bruns, T. D. (1999). Early effects of prescribed fire on the structure of the ectomycorrhizal fungus community in a Sierra Nevada ponderosa pine forest. Mycological Research, 103, 1353–1359.CrossRefGoogle Scholar
  74. Suz, L. M., Barsoum, N., Benham, S., Dietrich, H. P., Fetzer, K. D., Fischer, R., et al. (2014). Environmental drivers of ectomycorrhizal communities in Europe’s temperate oak forests. Molecular Ecology, 23, 5628–5644.CrossRefPubMedGoogle Scholar
  75. Tamm, C. O. (1991). Nitrogen in terrestrial habitats. Berlin: Springer.CrossRefGoogle Scholar
  76. Taylor, A. F. S., & Alexander, I. (2005). The ectomycorrhizal symbiosis: Life in the real world. Mycologist, 19, 102–112.CrossRefGoogle Scholar
  77. Taylor, A. F. S., & Finlay, R. D. (2003). Effects of liming and ash application on below ground ectomycorrhizal community structure in two Norway spruce forests. Water, Air, Soil Pollution Focus, 3, 63–76.CrossRefGoogle Scholar
  78. Taylor, A. F. S., Brand, F., Read, D. J., Lewis, D. H., Fitter, A. H., & Alexander, I. J. (1992). Reaction of the natural Norway spruce mycorrhizal flora to liming and acid irrigation. In Mycorrhizas in ecosystems (p. 404). Wallingford: C.A.B. International.Google Scholar
  79. Taylor, A. F. S., Martin, F., Read, D. J., & Schulze, E. D. (2000). Fungal diversity in ectomycorrhizal communities of Norway spruce (Picea abies (L.) Karst.) and Beech (Fagus sylvatica L.) along north–south transects in Europe. In Carbon and nitrogen cycling in European forest ecosystems (pp. 343–365). Berlin: Springer.CrossRefGoogle Scholar
  80. Tedersoo, L., May, T. W., & Smith, M. E. (2010). Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza, 20, 217–263.CrossRefPubMedGoogle Scholar
  81. Tedersoo, L., Bahram, M., Polme, S., Koljalg, U., Yorou, N. S., Wijesundera, R., et al. (2014). Global diversity and geography of soil fungi. Science, 346, 6213.CrossRefGoogle Scholar
  82. Toljander, J. F., Eberhardt, U., Toljander, Y. K., Paul, L. R., & Taylor, A. F. S. (2006). Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in a boreal forest. New Phytologist, 170, 873–884.CrossRefPubMedGoogle Scholar
  83. Uggla, E., Larsson, P.E., & Westling, O. (2003). Markkemi i kalkad skog. Lägesrapport 10 år efter kalkning. Årsrapport 2002. Effektoppföljning av Skogsstyrelsens program för åtgärder mot markförsurning. IVL rapport B 1536.Google Scholar
  84. Visser, S. (1995). Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytologist, 129, 389–401.CrossRefGoogle Scholar
  85. Wallander, H. (2000). Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant and Soil, 218, 249–256.CrossRefGoogle Scholar
  86. Wästerlund, I. (1982). Försvinner tallens mykorrhizasvamper vid gödsling? Botanisk Tidskrift, 76, 411–417.Google Scholar
  87. Wiklund, K., Nilsson, L. O., & Jacobsen, S. (1995). Effect of irrigation, fertilization, and artificial drought on basidioma production in a Norway spruce stand. Canadian Journal of Botany, 73, 200–208.CrossRefGoogle Scholar
  88. Zimmermann, S., & Frey, B. (2002). Soil respiration and microbial properties in an acid forest soil: Effects of wood ash. Soil Biology and Biochemistry, 34, 1727–1737.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Rasmus Kjøller
    • 1
    Email author
  • Carla Cruz-Paredes
    • 1
  • Karina E. Clemmensen
    • 2
  1. 1.Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
  2. 2.Department of Forest Mycology and Plant PathologySLUUppsalaSweden

Personalised recommendations