Feferman on Foundations pp 287-314 | Cite as
Feferman and the Truth
Chapter
First Online:
Abstract
We outline some of Feferman’s main contributions to the theory of truth and the motivations behind them. In particular, we sketch the role truth can play in the foundations of mathematics and in the formulation of reflection principles, systems of ramified truth, several variants of the Kripke–Feferman theory, a deflationist theory in an extension of classical logic, and the system for determinate truth.
Keywords
Axiomatic theories of truth Ramified truth Kripke–Feferman theory Reflective closure Determinate truth2010 Mathematics Subject Classification
03F03 03F25 03F35 3F40 03A05.References
- 1.Aczel, P.: Frege structures and the notions of proposition, truth and set. In: Barwise, J., Keisler, H., Kunen, K. (eds.) The Kleene Symposium, pp. 31–59. North Holland, Amsterdam (1980)Google Scholar
- 2.Aczel, P.: The strength of Martin-Löf’s intuitionistic type theory with one universe. In: Mietissen, S., Väänänen, J. (eds.) Proceedings of the Symposiums in Mathematical Logic in Oulu 1974 and Helsinki 1975, pp. 1–32. Department of Philosophy, University of Helsinki, Report no. 2 (1977)Google Scholar
- 3.Aczel, P., Feferman, S.: Consistency of the unrestricted abstraction principle using an intensional equivalence operator. In: Seldin, J.P., Hindley, J.R. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 67–98. Academics Press, New York (1980)Google Scholar
- 4.Burgess, J.P.: Friedman and the axiomatization of Kripke’s theory of truth. In: Tennant, N. (ed.) Foundational Adventures: Essays in Honor of Harvey M. Friedman, pp. 125–148. College Publications, London (2014)Google Scholar
- 5.Cantini, A.: Notes on formal theories of truth. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 35, 97–130 (1989)MathSciNetCrossRefMATHGoogle Scholar
- 6.Cantini, A.: A theory of formal truth arithmetically equivalent to ID\(_1\). J. Symb.Logic 55, 244–259 (1990)MathSciNetCrossRefMATHGoogle Scholar
- 7.Cantini, A.: Logical Frameworks for Truth and Abstraction: An Axiomatic Study. Number 135 in Studies in Logic and the Foundations of Mathematics. Elsevier, Amsterdam, Lausanne, New York, Oxford, Shannon and Tokyo (1996)Google Scholar
- 8.Craig, W., Vaught, R.: Finite axiomatizability using additional predicates. J. Symb. Logic 23, 289–308 (1958)MathSciNetCrossRefMATHGoogle Scholar
- 9.Feferman, S.: Transfinite recursive progressions of axiomatic theories. J.Symb. Logic 27, 259–316 (1962)MathSciNetCrossRefMATHGoogle Scholar
- 10.Feferman, S.: Systems of predicative analysis I. J. Symb.Logic 29, 1–30 (1964)Google Scholar
- 11.Feferman, S.: Systems of predicative analysis II. J. Symb. Logic 33(2), 193–220 (1968)MathSciNetCrossRefMATHGoogle Scholar
- 12.Feferman, S.: A more perspicuous formal system for predicativity. In: Lorenz, K. (ed.) Konstruktionen versus Positionen, vol. I, pp. 68–93. de Gruyter, Berlin (1978)Google Scholar
- 13.Feferman, S.: Constructive theories of functions and classes. In: Boffa, M., van Dalen, D., McAloon, K. (eds.) Logic Colloquium ’78: Proceedings of the Colloquium held in Mons, August 1978, pp. 159–224. North-Holland, Amsterdam, New York and Oxford (1979)Google Scholar
- 14.Feferman, S.: Iterated inductive fixed-point theories: application to Hancock’s conjecture. In: Metakides, G. (ed.) Patras Logic Symposion, pp. 171–195, Amsterdam, North Holland (1982)Google Scholar
- 15.Feferman, S.: Towards useful type-free theories I. J. Symb. Logic 49, 75–111 (1984)MathSciNetCrossRefMATHGoogle Scholar
- 16.Feferman, S.: Reflecting on incompleteness (outline draft). handwritten notes (1987)Google Scholar
- 17.Feferman, S.: Reflecting on incompleteness. J. Symb. Logic 56, 1–49 (1991)MathSciNetCrossRefMATHGoogle Scholar
- 18.Feferman, S.: Axioms for determinateness and truth. Rev. Symb. Logic 1, 204–217 (2008)MathSciNetMATHGoogle Scholar
- 19.Feferman, S.: Axiomatizing truth: Why and how. In: Berger, U., Diener, H., Schuster, P. (eds.) Logic, Construction, Computation, 185–200. Ontos, Frankfurt (2012)Google Scholar
- 20.Feferman, S., Strahm, T.: The unfolding of non-finitist arithmetic. Rev. Symb. Logic 3, 665–689 (2000)CrossRefMATHGoogle Scholar
- 21.Feferman, S., Strahm, T.: Unfolding finitist arithmetic. Ann. Pure Appl. Logic 104, 75–96 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 22.Field, H.: Tarski’s theory of truth. J. Philos. 69, 347–375 (1972)CrossRefGoogle Scholar
- 23.Field, H.: Deflating the conservativeness argument. J. Philos. 96(10), 533–40 (1999)MathSciNetCrossRefGoogle Scholar
- 24.Field, H.: Saving Truth From Paradox. Oxford University Press, Oxford (2008)CrossRefMATHGoogle Scholar
- 25.Friedman, H., Sheard, M.: An axiomatic approach to self-referential truth. Ann. Pure Appl. Logic 33, 1–21 (1987)MathSciNetCrossRefMATHGoogle Scholar
- 26.Fujimoto, K.: Relative truth definability of axiomatic truth theories. Bull. Symb. Logic 16, 305–344 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 27.Fujimoto, K.: Autonomous progression and transfinite iteration of self-applicable truth. J. Symb. Logic 76, 914–945 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 28.Fujimoto, K.: Classes and truths in set theory. Ann. Pure Appl. Logic 163, 1484–1523 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 29.Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik 38, 173–198 (1931)MathSciNetCrossRefMATHGoogle Scholar
- 30.Gupta, A.: Truth and paradox. J. Philos. Logic 11, 1–60 (1982)MathSciNetCrossRefMATHGoogle Scholar
- 31.Halbach, V.: Disquotationalism and infinite conjunctions. Mind 108, 1–22 (1999)MathSciNetCrossRefGoogle Scholar
- 32.Halbach, V.: How not to state the T-sentences. Analysis 66, 276–280 (2006). Correction of printing error in 67, 268Google Scholar
- 33.Halbach, V.: Axiomatic Theories of Truth, revised edition. Cambridge University Press, Cambridge (2014). first edition 2011Google Scholar
- 34.Halbach, V., Horsten, L.: Axiomatizing Kripke’s theory of truth. J. Symb. Logic 71, 677–712 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 35.Herzberger, H.G.: Notes on naive semantics. J. Philos. Logic 11, 61–102 (1982)MathSciNetCrossRefMATHGoogle Scholar
- 36.Horsten, L., Leigh, G., Leitgeb, H., Welch, P.: Revision revisited. Rev. Symb. Logic 5, 642–664 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 37.Horwich, P.: Truth, 2nd edn. Oxford University Press, Oxford (1998). first edition 1990Google Scholar
- 38.Jäger, G., Kahle, R., Setzer, A., Strahm, T.: The proof-theoretic analysis of transfinitely iterated fixed point theories. J. Symb. Logic 64(1), 53–67 (1999)MathSciNetCrossRefMATHGoogle Scholar
- 39.Koellner, P.: On reflection principles. Ann. Pure Appl. Logic 157, 206–219 (2009)MathSciNetCrossRefMATHGoogle Scholar
- 40.Kreisel, G.: Ordinal logics and the characterization of informal notions of proof. In: Todd, J.A. (ed.) Proceedings of the International Congress of Mathematicians, Edinburgh 1958, pp. 289–299, Cambridge University Press, Cambridge (1960)Google Scholar
- 41.Kreisel, G., Lévy, A.: Reflection principles and their use for establishing the complexity of axiomatic systems. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 14, 97–142 (1968)MathSciNetCrossRefMATHGoogle Scholar
- 42.Kripke, S.: Outline of a theory of truth. J. Philos. 72, 690–712 (1975). reprinted in Martin (1984)Google Scholar
- 43.Leitgeb, H.: Poppers Wahrheitstheorie(n). In: Morscher, E (ed.) Was wir Karl R. Popper und seiner Philosophie verdanken: Zu seinem 100. Geburtstag, ProPhil \(\cdot \) Projekte zur Philosophie, pp. 185–217. Academia Verlag, Sankt Augustin (2002)Google Scholar
- 44.Leitgeb, H.: What theories of truth should be like (but cannot be). In: Blackwell Philosophy Compass 2/2, pp. 276–290. Blackwell (2007)Google Scholar
- 45.Manaster, A.B., Payne, T.H., Harrah, D.: Meeting of the Association of Symbolic Logic, San Diego 1979. J. Symb. Logic 46, 199 (1981)Google Scholar
- 46.McGee, V.: Truth, Vagueness, and Paradox: An Essay on the Logic of Truth. Hackett Publishing, Indianapolis and Cambridge (1991)MATHGoogle Scholar
- 47.McGee, V.: In praise of the free lunch: Why disquotationalists should embrace compositional semantics. In: Hendricks, V.F., Pedersen, S.A. (eds.) Self-Reference, vol. 178, pp. 95–120. CSLI Publications, Stanford (2006)Google Scholar
- 48.Putnam, H.: A comparison of something with something else. New Lit. Hist. 17(1), 61–79 (1985). Reprinted in (Putnam 1994, 330-50)Google Scholar
- 49.Reinhardt, W.: Remarks on significance and meaningful applicability. In: de Alcantara, L.P. (ed.) Mathematical Logic and Formal Systems: A Collection of Papers in Honor of Professor Newton C.A. Da Costa. Lecture Notes in Pure and Applied Mathematics, vol. 94, pp. 227–242. Marcel Dekker inc. (1985)Google Scholar
- 50.Reinhardt, W.: Some remarks on extending and interpreting theories with a partial predicate for truth. J. Philos. Logic 15, 219–251 (1986)MathSciNetCrossRefMATHGoogle Scholar
- 51.Russell, B.: On some difficulties in the theory of transfinite numbers and order types. Proc. Lond. Math. Soc. 4, 29–53 (1906)MathSciNetMATHGoogle Scholar
- 52.Russell, B.: Mathematical logic as based on the theory of types. Am. J. Math. 30, 222–262 (1908)Google Scholar
- 53.Schindler, T.: Type-free truth. Ph.D. Thesis, Ludwig-Maximilians-Universität München (2014)Google Scholar
- 54.Schütte, K.: Proof Theory. Springer, Berlin (1977)CrossRefMATHGoogle Scholar
- 55.Schwichtenberg, H., Wainer, S.: Proofs and Computations. Perspectives in Logic. Association of Symbolic Logic and Cambridge University Press, Cambridge (2012)Google Scholar
- 56.Shapiro, S.: Proof and truth: through thick and thin. J. Philos. 95, 493–521 (1998)MathSciNetGoogle Scholar
- 57.Simpson, S.: Subsystems of Second Order Arithmetic. Springer, Berlin (1998)MATHGoogle Scholar
- 58.Tarski, A.: Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica Commentarii Societatis Philosophicae Polonorum 1, 261–405 (1935). translation of Tarski (1936) by L. Blaustein, translated as ‘The Concept of Truth in Formalized Languages’ in (Tarski 1956, 152–278)Google Scholar
- 59.Turing, A.: Systems of logic based on ordinals. Proc. Lond. Math. Soc. 45, 161–228 (1939)MathSciNetCrossRefMATHGoogle Scholar
- 60.Visser, A.: Four-valued semantics and the liar. J. Philos. Logic 13, 181–212 (1984)MathSciNetCrossRefMATHGoogle Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2017