Normalized Euclidean Super-Pixels for Medical Image Segmentation

  • Feihong Liu
  • Jun FengEmail author
  • Wenhuo Su
  • Zhaohui Lv
  • Fang Xiao
  • Shi Qiu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10363)


We propose a super-pixel segmentation algorithm based on normalized Euclidean distance for handling the uncertainty and complexity in medical image. Benefited from the statistic characteristics, compactness within super-pixels is described by normalized Euclidean distance. Our algorithm banishes the balance factor of the Simple Linear Iterative Clustering framework. In this way, our algorithm properly responses to the lesion tissues, such as tiny lung nodules, which have a little difference in luminance with their neighbors. The effectiveness of proposed algorithm is verified in The Cancer Imaging Archive (TCIA) database. Compared with Simple Linear Iterative Clustering (SLIC) and Linear Spectral Clustering (LSC), the experiment results show that, the proposed algorithm achieves competitive performance over super-pixel segmentation in the state of art.


Medical image processing Segmentation Super-pixels Local compactness 



This work was supported by National Natural Science Foundation of China (No. 61372046).


  1. 1.
    Li, P., Feng, J., Bu, Q., Liu, F., Wang, H.: Multi-object segmentation for abdominal CT image based on visual patch classification. In: Zha, H., Chen, X., Wang, L., Miao, Q. (eds.) CCCV 2015. CCIS, vol. 547, pp. 130–138. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48570-5_13 CrossRefGoogle Scholar
  2. 2.
    Wagemans, J., Elder, J.H., Kubovy, M., Palmer, S.E., Peterson, M.A., Singh, M., von der Heydt, R.: A century of Gestalt psychology in Visual Perception: I. Perceptual Grouping and Figure-Ground Organization. Psychol. Bull. 138(6), 1172–1217 (2012)CrossRefGoogle Scholar
  3. 3.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: International Conference on Computer Vision, pp. 839–846 (1998)Google Scholar
  4. 4.
    The Cancer Imaging Archive.
  5. 5.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)CrossRefGoogle Scholar
  6. 6.
    Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normalized cuts. In: Proceedings of the tenth ACM SIGKDD, pp. 551–556 (2004)Google Scholar
  7. 7.
    Li, Z., Chen, J.: Superpixel segmentation using linear spectral clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1356–1363 (2015)Google Scholar
  8. 8.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  9. 9.
    Liu, Y.J., Yu, C.C., Yu, M.J., He, Y.: Manifold slic: a fast method to compute content-sensitive superpixels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 651–659 (2016)Google Scholar
  10. 10.
    Yuille, A., Kersten, D.: Vision as Bayesian inference: analysis by synthesis? Trends cogn. Sci. 10(7), 301–308 (2006)CrossRefGoogle Scholar
  11. 11.
    Roth, H., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Summers, R.M.: A new 2.5 D representation for lymph node detection in CT. The Cancer Imaging Archive (2015).
  12. 12.
    Armato III, S.G., McLennan, G., Bidaut, L., McNitt-Gray, M.F., Meyer, C.R., Reeves, A.P., Clarke, L.P.: Data from LIDC-IDRI. The Cancer Imaging Archive (2015).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Feihong Liu
    • 1
  • Jun Feng
    • 1
    Email author
  • Wenhuo Su
    • 2
  • Zhaohui Lv
    • 1
  • Fang Xiao
    • 1
  • Shi Qiu
    • 3
  1. 1.School of Information and TechnologyNorthwest UniversityXi’anChina
  2. 2.Center for Nonlinear Studies, Department of MathematicalsNorthwest UniversityXi’anChina
  3. 3.Xi’an Institute of Optics and Precision Mechanics of CASXi’anChina

Personalised recommendations