Advertisement

A Robust Method for Multimodal Image Registration Based on Vector Field Consensus

  • Xinmei Wang
  • Xianhui LiuEmail author
  • Yufei Chen
  • Zhiping Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10363)

Abstract

Popular registration methods can be applying into multimodal images, such as Harris-PIIFD, SURF-RPM, GMM, GDB-ICP and so on. There exist some challenges in existing multimodal image registration techniques: (1) They fail to register image pairs with some significantly different content, illumination and texture changes; (2) They fail to register image pairs with too small overlapping or too much noise. To address these problem, this paper improves the multimodal registration by contribute a novel robust framework SURF-PIIFD-BBF-VFC (SPBV). The SURF-PIIFD method can provide enough repeatable and reliable local features; the bilateral matching method and vector field consensus (VFC) can establish robust point correspondences of two point sets. For evaluation, we compare the performance of the proposed SPBV with two existing methods Harris-PIIFD and SURF-RPM on two multimodal data sets. The results indicate that our SPBV method outperforms the existing methods and it is robust to low quality and small overlapping multimodal images.

Keywords

Multimodal registration SURF-PIIFD Bilateral matching Vector field consensus 

Notes

Acknowledgement

This work was supported by the Shanghai Innovation Action Project of Science and Technology (15DZ1101202) and the National Key Technology Support Program of China (No. 2015BAF17B00).

References

  1. 1.
    Laliberté, F., Gagnon, L., Sheng, Y.: Registration and fusion of retinal images-an evaluation study. IEEE Trans. Med. Imaging 22(5), 661–673 (2003)CrossRefGoogle Scholar
  2. 2.
    Chanwimaluang, T., Fan, G., Fransen, S.R.: Hybrid retinal image registration. IEEE Trans. Inf. Technol. Biomed. 10(1), 129–142 (2006)CrossRefGoogle Scholar
  3. 3.
    Cideciyan, A.V.: Registration of ocular fundus images: an algorithm using cross-correlation of triple invariant image descriptors. IEEE Eng. Med. Biol. Mag. 14(1), 52–58 (1995)CrossRefGoogle Scholar
  4. 4.
    Legg, P.A., Rosin, P.L., Marshall, D., et al.: Improving accuracy and efficiency of mutual information for multi-modal retinal image registration using adaptive probability density estimation. Comput. Med. Imaging Graph. 37(7), 597–606 (2013)CrossRefGoogle Scholar
  5. 5.
    Kolar, R., Harabis, V., Odstrcilik, J.: Hybrid retinal image registration using phase correlation. Imaging Sci. J. 61(4), 369–384 (2013)CrossRefGoogle Scholar
  6. 6.
    Ma, J., Zhou, H., Zhao, J., et al.: Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Trans. Geosci. Remote Sens. 53(12), 6469–6481 (2015)CrossRefGoogle Scholar
  7. 7.
    Studholme, C., Hawkes, D.J., Hill, D.L.: Normalized entropy measure for multimodality image alignment. In: Medical Imaging 1998, International Society for Optics and Photonics, pp. 132–143 (1998)Google Scholar
  8. 8.
    Brown, L.G.: A survey of image registration techniques. ACM Comput. Surv. (CSUR) 24(4), 325–376 (1992)CrossRefGoogle Scholar
  9. 9.
    Chen, J., Tian, J., Lee, N., et al.: A partial intensity invariant feature descriptor for multimodal retinal image registration. IEEE Trans. Biomed. Eng. 57(7), 1707–1718 (2010)CrossRefGoogle Scholar
  10. 10.
    Ghassabi, Z., Shanbehzadeh, J., Sedaghat, A., et al.: An efficient approach for robust multimodal retinal image registration based on UR-SIFT features and PIIFD descriptors. EURASIP J. Image Video Process. 2013(1), 1–16 (2013). doi: 10.1186/1687-5281-2013-25 CrossRefGoogle Scholar
  11. 11.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Bay, H., Tuytelaars, T., Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). doi: 10.1007/11744023_32 CrossRefGoogle Scholar
  13. 13.
    Liu, C., Ma, J., Ma, Y., et al.: Retinal image registration via feature-guided Gaussian mixture model. JOSA A 33(7), 1267–1276 (2016)CrossRefGoogle Scholar
  14. 14.
    Yang, G., Stewart, C.V., Sofka, M., et al.: Registration of challenging image pairs: initialization, estimation, and decision. IEEE Trans. Pattern Anal. Mach. Intell. 29(11) (2007)Google Scholar
  15. 15.
    Beis, J.S., Lowe, D.G.: Shape indexing using approximate nearest-neighbour search in high-dimensional spaces. In: Proceedings 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1000–1006. IEEE, (1997)Google Scholar
  16. 16.
    Ma, J., Zhao, J., Tian, J., et al.: Robust point matching via vector field consensus. IEEE Trans. Image Proc. 23(4), 1706–1721 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, no. 50 (1988). 10.5244Google Scholar
  18. 18.
    Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 79–116 (1998)CrossRefGoogle Scholar
  19. 19.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, CVPR 2001, vol. 1, p. I-I. IEEE (2001)Google Scholar
  20. 20.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer vision, vol. 2, pp. 1150–1157. IEEE (1999)Google Scholar
  21. 21.
    Bazen, A.M., Gerez, S.H.: Systematic methods for the computation of the directional fields and singular points of fingerprints. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 905–919 (2002)CrossRefGoogle Scholar
  22. 22.
    Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68(3), 337–404 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Quellec, G., Lamard, M., Cazuguel, G., et al.: Automated assessment of diabetic retinopathy severity using content-based image retrieval in multimodal fundus photographs. Invest. Ophthalmol. Vis. Sci. 52(11), 8342–8348 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Xinmei Wang
    • 1
  • Xianhui Liu
    • 1
    Email author
  • Yufei Chen
    • 1
  • Zhiping Zhou
    • 1
  1. 1.CAD Research CenterTongji UniversityShanghaiChina

Personalised recommendations