Computer Vision and EMG-Based Handwriting Analysis for Classification in Parkinson’s Disease

  • Claudio Loconsole
  • Gianpaolo Francesco Trotta
  • Antonio Brunetti
  • Joseph Trotta
  • Angelo Schiavone
  • Sabina Ilaria Tatò
  • Giacomo Losavio
  • Vitoantonio Bevilacqua
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10362)


Handwriting analysis represents an important research area in different fields. From forensic science to graphology, the automatic dynamic and static analyses of handwriting tasks allow researchers to attribute the paternity of a signature to a specific person or to infer medical and psychological patients’ conditions. An emerging research field for exploiting handwriting analysis results is the one related to Neurodegenerative Diseases (NDs). Patients suffering from a ND are characterized by an abnormal handwriting activity since they have difficulties in motor coordination and a decline in cognition.

In this paper, we propose an approach for differentiating Parkinson’s disease patients from healthy subjects using a handwriting analysis tool based on a limited number of features extracted by means of both computer vision and ElectroMyoGraphy (EMG) signal-processing techniques and processed using an Artificial Neural Network-based classifier.

Finally, we report and discuss the results of an experimental test conducted with both healthy and Parkinson’s Disease patients using the proposed approach.


Handwriting analysis Parkinson’s Disease EMG Computer vision 



This work has been funded from the FutureInResearch program of the Regione Puglia - project n. JTFWZV0 ABIOSAN - Advanced BIOmetric analysiS Against Neuromuscular disease.


  1. 1.
    Alamargot, D., Morin, M.-F.: Does handwriting on a tablet screen a effect students graphomotor execution? a comparison between grades two and nine. Hum. Mov. Sci. 44, 32–41 (2015)CrossRefGoogle Scholar
  2. 2.
    Bevilacqua, V., Brunetti, A., Triggiani, M., Magaletti, D., Telegrafo, M., Moschetta, M.: An optimized feed-forward artificial neural network topology to support radiologists in breast lesions classification. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 1385–1392. ACM (2016)Google Scholar
  3. 3.
    Bevilacqua, V., Mastronardi, G., Menolascina, F., Pannarale, P., Pedone, A.: A novel multi-objective genetic algorithm approach to artificial neural network topology optimisation: the breast cancer classification problem. In: 2006 International Joint Conference on Neural Networks IJCNN 2006, pp. 1958–1965. IEEE (2006)Google Scholar
  4. 4.
    Bevilacqua, V.: Three-dimensional virtual colonoscopy for automatic polyps detection by artificial neural network approach: New tests on an enlarged cohort of polyps. Neurocomputing 116, 62–75 (2013)CrossRefGoogle Scholar
  5. 5.
    Bidet-Ildei, C., Pollak, P., Kandel, S., Fraix, V., Orliaguet, J.-P.: Handwriting in patients with parkinson disease: Effect of l-dopa and stimulation of the subthalamic nucleus on motor anticipation. Hum. Mov. Sci. 30(4), 783–791 (2011)CrossRefGoogle Scholar
  6. 6.
    Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recogn. 30(7), 1145–1159 (1997)CrossRefGoogle Scholar
  7. 7.
    Carmeli, E., Patish, H., Coleman, R.: The aging hand. J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 58(2), M146–M152 (2003)CrossRefGoogle Scholar
  8. 8.
    Contreras-Vidal, J.L., Teulings, H.-L., Stelmach, G.E.: Micrographia in parkinson’s disease. NeuroReport 6(15), 2089–2092 (1995)CrossRefGoogle Scholar
  9. 9.
    Drotar, P., Mekyska, J., Smekal, Z., Rektorova, I., Masarova, L., Faundez-Zanuy, M.: Prediction potential of different handwriting tasks for diagnosis of parkinson’s. In: 2013 E-Health and Bioengineering Conference (EHB), pp. 1–4. IEEE (2013)Google Scholar
  10. 10.
    Eichhorn, T., Gasser, T., Mai, N., Marquardt, C., Arnold, G., Schwarz, J., Oertel, W.: Computational analysis of open loop handwriting movements in parkinson’s disease: a rapid method to detect dopamimetic effects. Mov. Disord. 11(3), 289–297 (1996)CrossRefGoogle Scholar
  11. 11.
    Flash, T., Inzelberg, R., Schechtman, E., Korczyn, A.D.: Kinematic analysis of upper limb trajectories in parkinson’s disease. Exp. Neurol. 118(2), 215–226 (1992)CrossRefGoogle Scholar
  12. 12.
    Gordon, A.M.: Task-dependent deficits during object release in parkinson’s disease. Exp. Neurol. 153(2), 287–298 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Helsper, E., Teulings, H.-L., Karamat, E., Stelmach, G.E.: Preclinical Parkinson features in optically scanned handwriting. In: Handwriting and Drawing Research: Basic and Applied Issues, pp. 241–250. IOS Press, Amsterdam (1996)Google Scholar
  14. 14.
    Leonardis, D., Barsotti, M., Loconsole, C., Solazzi, M., Troncossi, M., Mazzotti, C., Castelli, V.P., Procopio, C., Lamola, G., Chisari, C., Bergamasco, M., Frisoli, A.: An EMG-controlled robotic hand exoskeleton for bilateral rehabilitation. IEEE Trans. Haptics 8(2), 140–151 (2015)CrossRefGoogle Scholar
  15. 15.
    Loconsole, C., Leonardis, D., Barsotti, M., Solazzi, M., Frisoli, A., Bergamasco, M., Troncossi, M., Foumashi, M.M., Mazzotti, C., Castelli, V.P.: An EMG-based robotic hand exoskeleton for bilateral training of grasp. In: 2013 World Haptics Conference (WHC), pp. 537–542. IEEE (2013)Google Scholar
  16. 16.
    Longstaff, M.G., Mahant, P.R., Stacy, M.A., Van Gemmert, A.W., Leis, B.C., Stelmach, G.E.: Discrete and dynamic scaling of the size of continuous graphic movements of parkinsonian patients and elderly controls. J. Neurol. Neurosurg. Psychiatry 74(3), 299–304 (2003)CrossRefGoogle Scholar
  17. 17.
    Margolin, D.I., Wing, A.M.: Agraphia and micrographia: Clinical manifestations of motor programming and performance disorders. Acta Physiol. (Oxf) 54(1), 263–283 (1983)Google Scholar
  18. 18.
    McLennan, J., Nakano, K., Tyler, H., Schwab, R.: Micrographia in parkinson’s disease. J. Neurol. Sci. 15(2), 141–152 (1972)CrossRefGoogle Scholar
  19. 19.
    Müller, F., Stelmach, G.: Prehension movements in parkinson’s disease. Adv. Psychol. 87, 307–319 (1992)Google Scholar
  20. 20.
    Nutt, J.G., Lea, E.S., Van Houten, L., Schuff, R.A., Sexton, G.J.: Determinants of tapping speed in normal control subjects and subjects with parkinson’s disease: differing effects of brief and continued practice. Mov. Disord. 15(5), 843–849 (2000)CrossRefGoogle Scholar
  21. 21.
    Nutt, J.G., Wooten, G.F.: Diagnosis and initial management of parkinson’s disease. N. Engl. J. Med. 353(10), 1021–1027 (2005)CrossRefGoogle Scholar
  22. 22.
    Rand, M.K., Stelmach, G.E., Bloedel, J.R.: Movement accuracy constraints in parkinsons disease patients. Neuropsychologia 38(2), 203–212 (2000)CrossRefGoogle Scholar
  23. 23.
    Raudmann, M., Taba, P., Medijainen, K.: Handwriting speed and size in individuals with parkinsons disease compared to healthy controls: the possible effect of cueing. Acta Kinesiologiae Universitatis Tartuensis 20, 40–47 (2014)CrossRefGoogle Scholar
  24. 24.
    Rosenblum, S., Samuel, M., Zlotnik, S., Erikh, I., Schlesinger, I.: Handwriting as an objective tool for parkinsons disease diagnosis. J. Neurol. 260(9), 2357–2361 (2013)CrossRefGoogle Scholar
  25. 25.
    Siebner, H.R., Ceballos-Baumann, A., Standhardt, H., Auer, C., Conrad, B., Alesch, F.: Changes in handwriting resulting from bilateral high-frequency stimulation of the subthalamic nucleus in parkinson’s disease. Mov. Disord. 14(6), 964–971 (1999)CrossRefGoogle Scholar
  26. 26.
    Teulings, H., Contreras-Vidal, J.L., Stelmach, G., Adler, C.H.: Adaptation of handwriting size under distorted visual feedback in patients with parkinson’s disease and elderly and young controls. J. Neurol. Neurosurg. Psychiatry 72(3), 315–324 (2002)CrossRefGoogle Scholar
  27. 27.
    Teulings, H.-L., Stelmach, G.E.: Control of stroke size, peak acceleration, and stroke duration in parkinsonian handwriting. Hum. Mov. Sci. 10(2), 315–334 (1991)CrossRefGoogle Scholar
  28. 28.
    Tresilian, J.R., Stelmach, G.E., Adler, C.H.: Stability of reach-to-grasp movement patterns in parkinson’s disease. Brain 120(11), 2093–2111 (1997)CrossRefGoogle Scholar
  29. 29.
    Ünlü, A., Brause, R., Krakow, K.: Handwriting analysis for diagnosis and prognosis of parkinson’s disease. In: Maglaveras, N., Chouvarda, I., Koutkias, V., Brause, R. (eds.) ISBMDA 2006. LNCS, vol. 4345, pp. 441–450. Springer, Heidelberg (2006). doi: 10.1007/11946465_40 CrossRefGoogle Scholar
  30. 30.
    Van Gemmert, A., Adler, C.H., Stelmach, G.: Parkinsons disease patients undershoot target size in handwriting and similar tasks. J. Neurol. Neurosurg. Psychiatry 74(11), 1502–1508 (2003)CrossRefGoogle Scholar
  31. 31.
    Van Gemmert, A., Teulings, H.-L., Contreras-Vidal, J.L., Stelmach, G.: Parkinsons disease and the control of size and speed in handwriting. Neuropsychologia 37(6), 685–694 (1999)CrossRefGoogle Scholar
  32. 32.
    Van Gemmert, A.W., Teulings, H.-L., Stelmach, G.E.: Parkinsonian patients reduce their stroke size with increased processing demands. Brain Cogn. 47(3), 504–512 (2001)CrossRefGoogle Scholar
  33. 33.
    Wang, G., Lochovsky, F.H.: Feature selection with conditional mutual information maximin in text categorization. In: Proceedings of the Thirteenth ACM International Conference on Information and Knowledge Management, pp. 342–349. ACM (2004)Google Scholar
  34. 34.
    Wann, J., Nimmo-Smith, I.: The control of pen pressure in handwriting: A subtle point. Hum. Mov. Sci. 10(2), 223–246 (1991)CrossRefGoogle Scholar
  35. 35.
    Zhi, N., Jaeger, B., Gouldstone, A., Sipahi, R., Frank, S.: Toward monitoring parkinsons through analysis of static handwriting samples: A quantitative analytical framework. IEEE J. Biomed. Health Inform. 21(2), 488–495 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Claudio Loconsole
    • 1
  • Gianpaolo Francesco Trotta
    • 2
  • Antonio Brunetti
    • 1
  • Joseph Trotta
    • 1
  • Angelo Schiavone
    • 1
  • Sabina Ilaria Tatò
    • 3
  • Giacomo Losavio
    • 3
  • Vitoantonio Bevilacqua
    • 1
  1. 1.Department of Electrical and Information Engineering (DEI)Polytechnic University of BariBariItaly
  2. 2.Department of Mechanics, Mathematics and Management (DMMM)Polytechnic University of BariBariItaly
  3. 3.Medica Sud s.r.l.BariItaly

Personalised recommendations