Advertisement

Central Modulation of Energy Homeostasis and Cognitive Performance After Bariatric Surgery

  • Hans EickhoffEmail author
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 19)

Abstract

In moderately or morbidly obese patients, bariatric surgery has been proven to be an effective therapeutic approach to control body weight and comorbidities. Surgery-mediated modulation of brain function via modified postoperative secretion of gut peptides and vagal nerve stimulation was identified as an underlying mechanism in weight loss and improvement of weight-related diseases. Increased basal and postprandial plasma levels of gastrointestinal hormones like glucagon-like peptide 1 and peptide YY that act on specific areas of the hypothalamus to reduce food intake, either directly or mediated by the vagus nerve, are observed after surgery while suppression of meal-induced ghrelin release is increased. Hormones released from the adipose tissue like leptin and adiponectin are also affected and leptin plasma levels are reduced in treated patients. Besides homeostatic control of body weight, surgery also changes hedonistic behavior in regard to food intake and cognitive performance involving the limbic system and prefrontal areas.

Keywords

Bariatric surgery Brain function Cognitive performance Energy homeostasis Hedonic behavior 

References

  1. Abbott CR, Monteiro M, Small CJ, Sajedi A, Smith KL, Parkinson JRC, Ghatei MA, Bloom SR (2005a) The inhibitory effects of peripheral administration of peptide YY 3-36 and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res 1044:127–131PubMedCrossRefGoogle Scholar
  2. Abbott CR, Small CJ, Kennedy AR, Neary NM, Sajedi A, Ghatei MA, Bloom SR (2005b) Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY (3-36) on food intake. Brain Res 1043:139–144PubMedCrossRefGoogle Scholar
  3. Adami GF, Gradaschi R, Andraghetti G, Scopinaro N, Cordera R (2016) Serum leptin and adiponectin concentration in type 2 diabetes patients in the short and long term following biliopancreatic diversion. Obes Surg 26:2442–2448PubMedCrossRefGoogle Scholar
  4. Al-Rasheid N, Gray R, Sufi P, Marina-Gonzalez N, Al-Sayrafi M, Atherton E, Mohamed-Ali V (2014) Chronic elevation of systemic glucagon-like peptide-1 following surgical weight loss: association with nausea and vomiting and effects on adipokines. Obes Surg 25:386–391PubMedCentralCrossRefGoogle Scholar
  5. Alosco ML, Cohen R, Spitznagel MB, Strain G, Devlin M, Crosby RD, Mitchell JE, Gunstad J (2014a) Older age does not limit postbariatric surgery cognitive benefits: a preliminary investigation. Surg Obes Relat Dis 10:1196–1201PubMedPubMedCentralCrossRefGoogle Scholar
  6. Alosco ML, Galioto R, Spitznagel MB, Strain G, Devlin M, Cohen R, Crosby RD, Mitchell JE, Gunstad J (2014b) Cognitive function after bariatric surgery: evidence for improvement 3 years after surgery. Am J Surg 207:870–876PubMedCrossRefGoogle Scholar
  7. Alosco ML, Spitznagel MB, Strain G, Devlin M, Cohen R, Crosby RD, Mitchell JE, Gunstad J (2015) Improved serum leptin and ghrelin following bariatric surgery predict better postoperative cognitive function. J Clin Neurol 11:48–56PubMedPubMedCentralCrossRefGoogle Scholar
  8. Alosco ML, Spitznagel MB, Strain G, Devlin M, Cohen R, Paul R, Crosby RD, Mitchell JE, Gunstad J (2014c) Improved memory function two years after bariatric surgery. Obesity (Silver Spring) 22:32–38CrossRefGoogle Scholar
  9. Anderberg RH, Richard JE, Eerola K, Ferreras LL, Nordbeck EB, Hansson C, Nissbrandt H, Berqquist F, Gribble FM, Reimann F, Wernstedt-Asterholm I, Lamy C, Skibicka KP (2017) Glucagon-like peptide-1 and its analogues act in the dorsal raphe and modulate central serotonin to reduce appetite and body weight. Diabetes 66(4):1062–1073. doi: 10.2337/db16-0755 PubMedCrossRefGoogle Scholar
  10. Aneta Stefanidis PD, Forrest N, Brown WA, Dixon JB, O’Brien PB, Kampe J, Oldfield BJ (2016) An investigation of the neural mechanisms underlying the efficacy of the adjustable gastric band. Surg Obes Relat Dis 12:828–838PubMedCrossRefGoogle Scholar
  11. Apovian CM, Shah SN, Wolfe BM, Ikramuddin S, Miller CJ, Tweden KS, Billington CJ, Shikora SA (2017) Two-year outcomes of vagal nerve blocking (vBloc) for the treatment of obesity in the ReCharge trial. Obes Surg 27:169–176PubMedCrossRefGoogle Scholar
  12. Balbo SL, Ribeiro RA, Mendes MC, Lubaczeuski C, Maller ACPA, Carneiro EM, Bonfleur ML (2016) Vagotomy diminishes obesity in cafeteria rats by decreasing cholinergic potentiation of insulin release. J Physiol Biochem 72:625–633PubMedCrossRefGoogle Scholar
  13. Ballantyne GH (2006) Peptide YY(1-36) and peptide YY(3-36). Part I: Distribution, release and actions. Obes Surg 16:651–658PubMedCrossRefGoogle Scholar
  14. Ballsmider LA, Vaughn AC, David M, Hajnal A, Di Lorenzo PM, Czaja K (2015) Sleeve gastrectomy and Roux-en-Y gastric bypass alter the gut-brain communication. Neural Plast 2015:601985PubMedPubMedCentralCrossRefGoogle Scholar
  15. Balthasar N, Coppari R, McMinn J, Liu SM, Lee CE, Tang V, Kenny CD, McGovern RA, Chua SC, Elmquist JK, Lowell BB (2004) Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42:983–991PubMedCrossRefGoogle Scholar
  16. Barkholt P, Pedersen PJ, Hay-Schmidt A, Jelsing J, Hansen HH, Vrang N (2016) Alterations in hypothalamic gene expression following Roux-en-Y gastric bypass. Mol Metab 5:296–304PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bassi M, Do Carmo JM, Hall JE, Da Silva AA (2012) Chronic effects of centrally administered adiponectin on appetite, metabolism and blood pressure regulation in normotensive and hypertensive rats. Peptides 37:1–5PubMedPubMedCentralCrossRefGoogle Scholar
  18. Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, Ghatei MA, Bloom SR (2003) Inhibition of food intake in obese subjects by peptide YY 3-36. N Engl J Med 349:941–948PubMedCrossRefGoogle Scholar
  19. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatei MA, Cone RD, Bloom SR (2002) Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 418:650–654PubMedCrossRefGoogle Scholar
  20. Beglinger S, Drewe J, Schirra J, Göke B, D’Amato M, Beglinger C (2010) Role of fat hydrolysis in regulating glucagon-like peptide-1 secretion. J Clin Endocrinol Metab 95:879–886PubMedCrossRefGoogle Scholar
  21. Blasi C (2016) The role of the vagal nucleus Tractus Solitarius in the therapeutic effects of obesity surgery and other interventional therapies on type 2 diabetes. Obes Surg 26:3045–3057PubMedCrossRefGoogle Scholar
  22. Blevins JE, Stanley BG, Reidelberger RD (2000) Brain regions where cholecystokinin suppresses feeding in rats. Brain Res 860:1–10PubMedCrossRefGoogle Scholar
  23. Bloom S, Wynne K, Chaudhri O (2005) Gut feeling--the secret of satiety? Clin Med 5:147–152CrossRefGoogle Scholar
  24. Blum K, Bailey J (2011) Neuro-genetics of reward deficiency syndrome (RDS) as the root cause of “addiction transfer”: a new phenomenon common after bariatric surgery. J Genet Syndr Gene Ther 2012:1–21Google Scholar
  25. Boeka AG, Lokken KL (2008) Neuropsychological performance of a clinical sample of extremely obese individuals. Arch Clin Neuropsychol 23:467–474PubMedCrossRefGoogle Scholar
  26. Borg CM, le Roux CW, Ghatei MA, Bloom SR, Patel AG, SJB A (2006) Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg 93:210–215PubMedCrossRefGoogle Scholar
  27. Browning KN, Fortna SR, Hajnal A (2013) Roux-en-Y gastric bypass reverses the effects of diet-induced obesity to inhibit the responsiveness of central vagal motoneurones. J Physiol 591:2357–2372PubMedPubMedCentralCrossRefGoogle Scholar
  28. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, Schoelles K (2004) Bariatric surgery: a systematic review and meta-analysis. JAMA 292:1724–1737PubMedCrossRefGoogle Scholar
  29. Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, Pories WJ, Bantle JP, Sledge I (2009) Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med 122. 248–256.e5Google Scholar
  30. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P (1995) Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269:546–549PubMedCrossRefGoogle Scholar
  31. Chan J, Mantzoros C (2003) The role of falling Leptin levels in the neuroendocrime and metabolic adaption to short-term starvation in healthy men. J Clin Invest 111:1409–1421PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chelikani PK, Haver AC, Reeve JR, Keire DA, Reidelberger RD (2006) Daily, intermittent intravenous infusion of peptide YY(3-36) reduces daily food intake and adiposity in rats. Am J Physiol Regul Integr Comp Physiol 290:R298–R305PubMedCrossRefGoogle Scholar
  33. Christou NV, Look D, McLean AP (2005) Pre- and post-prandial plasma ghrelin levels do not correlate with satiety or failure to achieve a successful outcome after Roux-en-Y gastric bypass. Obes Surg 15:1017–1023PubMedCrossRefGoogle Scholar
  34. Chronaiou A, Tsoli M, Kehagias I, Leotsinidis M, Kalfarentzos F, Alexandrides TK (2012) Lower ghrelin levels and exaggerated postprandial peptide-YY, glucagon-like peptide-1, and insulin responses, after gastric fundus resection, in patients undergoing Roux-en-Y gastric bypass: a randomized clinical trial. Obes Surg 22:1761–1770PubMedCrossRefGoogle Scholar
  35. Cohen MA, Ellis SM, Le Roux CW, Batterham RL, Park A, Patterson M, Frost GS, Ghatei MA, Bloom SR (2003) Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab 88:4696–4701PubMedCrossRefGoogle Scholar
  36. Coluzzi I, Raparelli L, Guarnacci L, Paone E, Del Genio G, le Roux CW, Silecchia G (2016) Food intake and changes in eating behavior after laparoscopic sleeve gastrectomy. Obes Surg 26:2059–2067PubMedCrossRefGoogle Scholar
  37. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334:292–295PubMedCrossRefGoogle Scholar
  38. Creutzfeldt W (1979) The incretin concept today. Diabetologia 16:75–85PubMedCrossRefGoogle Scholar
  39. Cummings BP, Bettaieb A, Graham JL, Stanhope KL, Kowala M, Haj FG, Chouinard ML, Havel PJ (2012) Vertical sleeve gastrectomy improves glucose and lipid metabolism and delays diabetes onset in UCD-T2DM rats. Endocrinology 153:3620–3632PubMedPubMedCentralCrossRefGoogle Scholar
  40. Cummings DE (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50:1714–1719PubMedCrossRefGoogle Scholar
  41. Cummings DE, Overduin J, Foster-Schubert KE (2004) Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab 89:2608–2615PubMedCrossRefGoogle Scholar
  42. Cummings DE, Weigle DS, Frayo RS (2002) Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 346:1623–1630PubMedCrossRefGoogle Scholar
  43. Dakin CL, Gunn I, Small CJ, Edwards CM, Hay DL, Smith DM, Ghatei MA, Bloom SR (2001) Oxyntomodulin inhibits food intake in the rat. Endocrinology 142:4244–4250PubMedCrossRefGoogle Scholar
  44. Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M (2000) Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141:4255–4261PubMedCrossRefGoogle Scholar
  45. Davies MJ, Bergenstal R, Bode B, Kushner RF, Lewin A, Skjøth TV, Andreasen AH, Jensen CB, DeFronzo RA (2015) Efficacy of Liraglutide for weight loss among patients with type 2 diabetes. JAMA 314:687PubMedCrossRefGoogle Scholar
  46. de Lartigue G, Diepenbroek C (2016) Novel developments in vagal afferent nutrient sensing and its role in energy homeostasis. Curr Opin Pharmacol 31:38–43PubMedPubMedCentralCrossRefGoogle Scholar
  47. De Silva A, Salem V, Long CJ, Makwana A, Newbould RD, Rabiner EA, Ghatei MA, Bloom SR, Matthews PM, Beaver JD, Dhillo WS (2011) The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab 14:700–706PubMedPubMedCentralCrossRefGoogle Scholar
  48. De Weijer BA, Van De Giessen E, Janssen I, Berends FJ, Van De Laar A, Ackermans MT, Fliers E, La Fleur SE, Booij J, Serlie MJ (2014) Striatal dopamine receptor binding in morbidly obese women before and after gastric bypass surgery and its relationship with insulin sensitivity. Diabetologia 57:1078–1080PubMedPubMedCentralCrossRefGoogle Scholar
  49. Degen L, Drewe J, Piccoli F, Gräni K, Oesch S, Bunea R, D’Amato M, Beglinger C (2007) Effect of CCK-1 receptor blockade on ghrelin and PYY secretion in men. Am J Physiol Regul Integr Comp Physiol 292:R1391–R1399PubMedCrossRefGoogle Scholar
  50. Dirksen C, Jørgensen NB, Bojsen-Møller KN, Kielgast U, Jacobsen SH, Clausen TR, Worm D, Hartmann B, Rehfeld JF, Damgaard M, Madsen JL, Madsbad S, Holst JJ, Hansen DL (2013) Gut hormones, early dumping and resting energy expenditure in patients with good and poor weight loss response after Roux-en-Y gastric bypass. Int J Obes 37:1452–1459CrossRefGoogle Scholar
  51. Drenick EJ, Ament ME, Finegold SM, Corrodi P, Passaro E (1976) Bypass enteropathy. Intestinal and systemic manifestations following small-bowel bypass. JAMA 236:269–272PubMedCrossRefGoogle Scholar
  52. Dunn JP, Cowan RL, Volkow ND, Feurer ID, Li R, Williams DB, Kessler RM, Abumrad NN (2010) Decreased dopamine type 2 receptor availability after bariatric surgery: preliminary findings. Brain Res 1350:123–130PubMedPubMedCentralCrossRefGoogle Scholar
  53. Dupre J, Ross SA, Watson D, Brown JC (1973) Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 37:826–828PubMedCrossRefGoogle Scholar
  54. Eickhoff H, Louro TM, Matafome PN, Vasconcelos F, Seiça RM, Castro E, Sousa F (2015) Amelioration of glycemic control by sleeve Gastrectomy and gastric bypass in a lean animal model of type 2 diabetes: restoration of gut hormone profile. Obes Surg 25:7–18PubMedCrossRefGoogle Scholar
  55. Eissele R, Göke R, Willemer S, Harthus HP, Vermeer H, Arnold R, Göke B (1992) Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur J Clin Investig 22:283–291CrossRefGoogle Scholar
  56. Elias MF, Elias PK, Sullivan LM, Wolf PA, D’Agostino RB (2003) Lower cognitive function in the presence of obesity and hypertension: the Framingham heart study. Int J Obes Relat Metab Disord 27:260–268PubMedCrossRefGoogle Scholar
  57. English PJ, Ghatei MA, Malik IA, Bloom SR, Wilding JPH (2002) Food fails to suppress ghrelin levels in obese humans. J Clin Endocrinol Metab 87:2984PubMedCrossRefGoogle Scholar
  58. Fagundo AB, de la Torre R, Jiménez-Murcia S, Agüera Z, Granero R, Tárrega S, Botella C, Baños R, Fernández-Real JM, Rodríguez R, Forcano L, Frühbeck G, Gómez-Ambrosi J, Tinahones FJ, Fernández-García JC, Casanueva FF, Fernández-Aranda F (2012) Executive functions profile in extreme eating/weight conditions: from anorexia nervosa to obesity. PLoS One 7(8):e43382PubMedPubMedCentralCrossRefGoogle Scholar
  59. Faraj M, Havel PJ, Phélis S, Blank D, Sniderman AD, Cianflone K (2003) Plasma acylation-stimulating protein, adiponectin, leptin, and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab 88:1594–1602PubMedCrossRefGoogle Scholar
  60. Fergenbaum JH, Bruce S, Lou W, Hanley AJG, Greenwood C, Young TK (2009) Obesity and lowered cognitive performance in a Canadian first nations population. Obesity (Silver Spring) 17:1957–1963CrossRefGoogle Scholar
  61. Fikri E, Cassella R (1974) Jejunoileal bypass for massive obesity: results and complications in fifty-two patients. Ann Surg 179:460–464PubMedPubMedCentralCrossRefGoogle Scholar
  62. Foschi D, Corsi F, Pisoni L, Vago T, Bevilacqua M, Asti E, Righi I, Trabucchi E (2004) Plasma cholecystokinin levels after vertical banded gastroplasty: effects of an acidified meal. Obes Surg 14:644–647PubMedCrossRefGoogle Scholar
  63. Frühbeck G, Diez-Caballero A, Gil MJ, Montero I, Gómez-Ambrosi J, Salvador J, Cienfuegos JA (2004) The decrease in plasma ghrelin concentrations following bariatric surgery depends on the functional integrity of the fundus. Obes Surg 14:606–612PubMedCrossRefGoogle Scholar
  64. Gallaher ZR, Ryu V, Herzog T, Ritter RC, Czaja K (2012) Changes in microglial activation within the hindbrain, nodose ganglia, and the spinal cord following subdiaphragmatic vagotomy. Neurosci Lett 513:31–36PubMedPubMedCentralCrossRefGoogle Scholar
  65. Garlicki J, Konturek PK, Majka J, Kwiecien N, Konturek SJ (1990) Cholecystokinin receptors and vagal nerves in control of food intake in rats. Am J Phys 258:E40–E45Google Scholar
  66. Georgiadou E, Gruner-Labitzke K, Köhler H, de Zwaan M, Müller A (2014) Cognitive function and nonfood-related impulsivity in post-bariatric surgery patients. Front Psychol 5:1–7CrossRefGoogle Scholar
  67. Goldstone AP, Miras AD, Scholtz S, Jackson S, Neff KJ, Pénicaud L, Geoghegan J, Chhina N, Durighel G, Bell JD, Meillon S, le Roux CW (2016) Link between increased satiety gut hormones and reduced food reward after gastric bypass surgery for obesity. J Clin Endocrinol Metab 101:599–609PubMedCrossRefGoogle Scholar
  68. Gonzales MM, Kaur S, Eagan DE, Goudarzi K, Pasha E, Doan DC, Tanaka H, Haley AP (2014) Central adiposity and the functional magnetic resonance imaging response to cognitive challenge. Int J Obes 38:1193–1199CrossRefGoogle Scholar
  69. Gortz L, Bjorkman A-C, Andersson H, Kral JG (1990) Truncal vagotomy reduces food and liquid intake in man. Physiol Behav 48:779–781PubMedCrossRefGoogle Scholar
  70. Grayson BE, Fitzgerald MF, Hakala-Finch AP, Ferris VM, Begg DP, Tong J, Woods SC, Seeley RJ, Davidson TL, Benoit SC (2014) Improvements in hippocampal-dependent memory and microglial infiltration with calorie restriction and gastric bypass surgery, but not with vertical sleeve gastrectomy. Int J Obes 38:349–356CrossRefGoogle Scholar
  71. Gumbau V, Bruna M, Canelles E, Guaita M, Mulas C, Basés C, Celma I, Puche J, Marcaida G, Oviedo M, Vázquez A (2014) A prospective study on inflammatory parameters in obese patients after sleeve gastrectomy. Obes Surg 24:903–908PubMedCrossRefGoogle Scholar
  72. Gunstad J, Lhotsky A, Wendell CR, Ferrucci L, Zonderman AB (2010) Longitudinal examination of obesity and cognitive function: results from the Baltimore longitudinal study of aging. Neuroepidemiology 34:222–229PubMedPubMedCentralCrossRefGoogle Scholar
  73. Gunstad J, Paul RH, Cohen RA, Tate DF, Spitznagel MB, Gordon E (2007) Elevated body mass index is associated with executive dysfunction in otherwise healthy adults. Compr Psychiatry 48:57–61PubMedCrossRefGoogle Scholar
  74. Gunstad J, Strain G, Devlin MJ, Wing R, Cohen RA, Paul RH, Crosby RD, Mitchell JE (2011) Improved memory function 12 weeks after bariatric surgery. Surg Obes Relat Dis 7:465–472PubMedCrossRefGoogle Scholar
  75. Gutzwiller JP, Göke B, Drewe J, Hildebrand P, Ketterer S, Handschin D, Winterhalder R, Conen D, Beglinger C (1999) Glucagon-like peptide-1: a potent regulator of food intake in humans. Gut 44:81–86PubMedPubMedCentralCrossRefGoogle Scholar
  76. Hall KD, Hammond RA, Rahmandad H (2014) Dynamic interplay among homeostatic, hedonic, and cognitive feedback circuits regulating body weight. Am J Public Health 104:1169–1175PubMedPubMedCentralCrossRefGoogle Scholar
  77. Halverson JD, Wise L, Wazna MF, Ballinger WF (1978) Jejunoileal bypass for morbid obesity. A critical appraisal. Am J Med 64:461–475PubMedCrossRefGoogle Scholar
  78. Han W, Tellez LA, Niu J, Medina S, Ferreira TL, Zhang X, Su J, Tong J, Schwartz GJ, van den Pol A, de Araujo IE (2015) Striatal dopamine links gastrointestinal rerouting to altered sweet appetite. Cell Metab 23:103–112PubMedPubMedCentralCrossRefGoogle Scholar
  79. Hankir MK, Seyfried F, Hintschich CA, Diep T-A, Kleberg K, Kranz M, Deuther-Conrad W, Tellez LA, Rullmann M, Patt M, Teichert J, Hesse S, Sabri O, Brust P, Hansen HS, de Araujo IE, Krügel U, Fenske WK (2017) Gastric bypass surgery recruits a gut PPAR-α-striatal D1R pathway to reduce fat appetite in obese rats. Cell Metab 25:1–10CrossRefGoogle Scholar
  80. Hao Z, Münzberg H, Rezai-Zadeh K, Keenan M, Coulon D, Lu H, Berthoud H-R, Ye J (2015) Leptin deficient ob/ob mice and diet-induced obese mice responded differently to Roux-en-Y bypass surgery. Int J Obes 39:798–805CrossRefGoogle Scholar
  81. Hao Z, Townsend RL, Mumphrey MB, Patterson LM, Ye J, Berthoud H-R (2014) Vagal innervation of intestine contributes to weight loss after Roux-en-Y gastric bypass surgery in rats. Obes Surg 24:2145–2151PubMedPubMedCentralCrossRefGoogle Scholar
  82. Hawkins MAW, Alosco ML, Spitznagel MB, Strain G, Devlin M, Cohen R, Crosby RD, Mitchell JE, Gunstad J (2015) The association between reduced inflammation and cognitive gains after bariatric surgery. Psychosom Med 77:688–696PubMedPubMedCentralCrossRefGoogle Scholar
  83. Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T, Lubina JA, Patane J, Self B, Hunt P (1999) Recombinant leptin for weight loss in obese and lean adults. JAMA 282:1568–1575PubMedCrossRefGoogle Scholar
  84. Holdstock C, Engström BE, Ohrvall M, Lind L, Sundbom M, Karlsson FA (2003) Ghrelin and adipose tissue regulatory peptides: effect of gastric bypass surgery in obese humans. J Clin Endocrinol Metab 88:3177–3183PubMedCrossRefGoogle Scholar
  85. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y (2000) Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 20:1595–1599PubMedCrossRefGoogle Scholar
  86. Johannessen H, Revesz D, Kodama Y, Cassie N, Skibicka K, Barrett P, Dickson S, Holst J, Rehfeld J, van der Plasse G, Adan R, Kulseng B, Ben-Menachem E, Zhao CM, Chen D (2017) Vagal blocking for obesity control: a possible mechanism-of-action. Obes Surg 27:177–185PubMedCrossRefGoogle Scholar
  87. Kadowaki T, Yamauchi T, Kubota N (2008) The physiological and pathophysiological role of adiponectin and adiponectin receptors in the peripheral tissues and CNS. FEBS Lett 582:74–80PubMedCrossRefGoogle Scholar
  88. Karamanakos SN, Vagenas K, Kalfarentzos F, Alexandrides TK (2008) Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann Surg 247:401–407PubMedCrossRefGoogle Scholar
  89. Karlsson HK, Tuominen L, Tuulari JJ, Hirvonen J, Parkkola R, Helin S, Salminen P, Nuutila P, Nummenmaa L (2015) Obesity is associated with decreased μ-opioid but unaltered dopamine D2 receptor availability in the brain. J Neurosci 35:3959–3965PubMedCrossRefGoogle Scholar
  90. Kashyap SR, Bhatt DL, Wolski K, Watanabe RM, Abdul-Ghani M, Abood B, Pothier CE, Brethauer S, Nissen S, Gupta M, Kirwan JP, Schauer PR (2013) Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care 36:2175–2182PubMedPubMedCentralCrossRefGoogle Scholar
  91. Kawasaki T, Ohta M, Kawano Y, Masuda T, Gotoh K, Inomata M, Kitano S (2015) Effects of sleeve gastrectomy and gastric banding on the hypothalamic feeding center in an obese rat model. Surg Today 45:1560–1566PubMedCrossRefGoogle Scholar
  92. Kentish SJ, Page AJ (2015) The role of gastrointestinal vagal afferent fibres in obesity. J Physiol 593:775–786PubMedCrossRefGoogle Scholar
  93. Kohno D, Gao H-Z, Muroya S, Kikuyama S, Yada T (2003) Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2+ signaling via protein kinase a and N-type channel-dependent mechanisms and cross-talk with leptin and orexin. Diabetes 52:948–956PubMedCrossRefGoogle Scholar
  94. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660PubMedCrossRefGoogle Scholar
  95. Kopin AS, Mathes WF, McBride EW, Nguyen M, Al-Haider W, Schmitz F, Bonner-Weir S, Kanarek R, Beinborn M (1999) The cholecystokinin-a receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight. J Clin Invest 103:383–391PubMedPubMedCentralCrossRefGoogle Scholar
  96. Korner J, Conroy R, Febres G, McMahon DJ, Conwell I, Karmally W, Aronne LJ (2013) Randomized double-blind placebo-controlled study of leptin administration after gastric bypass. Obesity 21:951–956PubMedPubMedCentralCrossRefGoogle Scholar
  97. Korner J, Inabnet W, Conwell IM, Taveras C, Daud A, Olivero-Rivera L, Restuccia NL, Bessler M (2006) Differential effects of gastric bypass and banding on circulating gut hormone and leptin levels. Obesity (Silver Spring) 14:1553–1561CrossRefGoogle Scholar
  98. Kosinski JR, Hubert J, Carrington PE, Chicchi GG, Mu J, Miller C, Cao J, Bianchi E, Pessi A, Sinharoy R, Marsh DJ, Pocai A (2012) The glucagon receptor is involved in mediating the body weight-lowering effects of oxyntomodulin. Obesity (Silver Spring) 20:1566–1571CrossRefGoogle Scholar
  99. Kotidis EV, Koliakos GG, Baltzopoulos VG, Ioannidis KN, Yovos JG, Papavramidis ST (2006) Serum ghrelin, leptin and adiponectin levels before and after weight loss: comparison of three methods of treatment—a prospective study. Obes Surg 16:1425–1432PubMedCrossRefGoogle Scholar
  100. Kral JG, Paez W, Wolfe BM (2009) Vagal nerve function in obesity: therapeutic implications. World J Surg 33:1995–2006PubMedCrossRefGoogle Scholar
  101. Kreymann B, Williams G, Ghatei MA, Bloom SR (1987) Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 2:1300–1304PubMedCrossRefGoogle Scholar
  102. Kringelbach ML, Radcliffe J (2005) The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci 6:691–702PubMedCrossRefGoogle Scholar
  103. Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, Kozono H, Takamoto I, Okamoto S, Shiuchi T, Suzuki R, Satoh H, Tsuchida A, Moroi M, Sugi K, Noda T, Ebinuma H, Ueta Y, Kondo T, Araki E, Ezaki O, Nagai R, Tobe K, Terauchi Y, Ueki K, Minokoshi Y, Kadowaki T (2007) Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab 6:55–68PubMedCrossRefGoogle Scholar
  104. Kuo Y-T, Parkinson JRC, Chaudhri OB, Herlihy AH, So P-W, Dhillo WS, Small CJ, Bloom SR, Bell JD (2007) The temporal sequence of gut peptide CNS interactions tracked in vivo by magnetic resonance imaging. J Neurosci 27:12341–12348PubMedCrossRefGoogle Scholar
  105. Langer FB, Reza Hoda MA, Bohdjalian A, Felberbauer FX, Zacherl J, Wenzl E, Schindler K, Luger A, Ludvik B, Prager G (2005) Sleeve gastrectomy and gastric banding: effects on plasma ghrelin levels. Obes Surg 15:1024–1029PubMedCrossRefGoogle Scholar
  106. Larsen PJ, Tang-Christensen M, Holst JJ, Orskov C (1997) Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience 77:257–270PubMedCrossRefGoogle Scholar
  107. le Roux CW, Aylwin SJB, Batterham RL, Borg CM, Coyle F, Prasad V, Shurey S, Ghatei M a, Patel AG, Bloom SR (2006) Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg 243:108–114PubMedPubMedCentralCrossRefGoogle Scholar
  108. le Roux CW, Bloom SR (2005) Why do patients lose weight after Roux-en-Y gastric bypass? J Clin Endocrinol Metab 90:591–592PubMedCrossRefGoogle Scholar
  109. le Roux CW, Welbourn R, Werling M, Osborne A, Kokkinos A, Laurenius A, Lönroth H, Fändriks L, Ghatei MA, Bloom SR, Olbers T (2007) Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg 246:780–785PubMedCrossRefGoogle Scholar
  110. Lee W-J, Chen C-Y, Chong K, Lee Y-C, Chen S-C, Lee S-D (2011) Changes in postprandial gut hormones after metabolic surgery: a comparison of gastric bypass and sleeve gastrectomy. Surg Obes Relat Dis 7:683–690PubMedCrossRefGoogle Scholar
  111. Liddle RA, Goldfine ID, Rosen MS, Taplitz RA, Williams JA (1985) Cholecystokinin bioactivity in human plasma. J Clin Invest 75:1144–1152PubMedPubMedCentralCrossRefGoogle Scholar
  112. Liu AG, Smith SR, Fujioka K, Greenway FL (2013) The effect of leptin, caffeine/ephedrine, and their combination upon visceral fat mass and weight loss. Obesity 21:1991–1996PubMedCrossRefGoogle Scholar
  113. Lundberg JM, Tatemoto K, Terenius L, Hellström PM, Mutt V, Hökfelt T, Hamberger B (1982) Localization of peptide YY (PYY) in gastrointestinal endocrine cells and effects on intestinal blood flow and motility. Proc Natl Acad Sci U S A 79:4471–4475PubMedPubMedCentralCrossRefGoogle Scholar
  114. Lutter M, Nestler EJ (2009) Homeostatic and hedonic signals interact in the regulation of food intake. J Nutr 139:629–632PubMedPubMedCentralCrossRefGoogle Scholar
  115. Mackintosh RM, Hirsch J (2001) The effects of leptin administration in non-obese human subjects. Obes Res 9:462–469PubMedCrossRefGoogle Scholar
  116. Malik S, McGlone F, Bedrossian D, Dagher A (2008) Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab 7:400–409PubMedCrossRefGoogle Scholar
  117. Marques EL, Halpern A, Mancini MC, De Melo ME, Horie NC, Buchpiguel CA, Coutinho AMN, Ono CR, Prando S, Santo MA, Cunha-Neto E, Fuentes D, Cercato C (2014) Changes in neuropsychological tests and brain metabolism after bariatric surgery. J Clin Endocrinol Metab 99:E2347–E2352PubMedCrossRefGoogle Scholar
  118. Mason EE, Ito C (1969) Gastric bypass. Ann Surg 170:329–339PubMedPubMedCentralCrossRefGoogle Scholar
  119. Mason EE, Printen KJ, Blommers TJ, Scott DH (1978) Gastric bypass for obesity after ten years experience. Int J Obes 2:197–206PubMedGoogle Scholar
  120. McCutcheon JE (2015) The role of dopamine in the pursuit of nutritional value. Physiol Behav 152:408–415PubMedCrossRefGoogle Scholar
  121. Miller LA, Crosby RD, Galioto R, Strain G, Devlin MJ, Wing R, Cohen RA, Paul RH, Mitchell JE, Gunstad J (2013) Bariatric surgery patients exhibit improved memory function 12 months postoperatively. Obes Surg 23:1527–1535PubMedPubMedCentralCrossRefGoogle Scholar
  122. Mingrone G, Castagneto-Gissey L (2009) Mechanisms of early improvement/resolution of type 2 diabetes after bariatric surgery. Diabetes Metab 35:518–523PubMedCrossRefGoogle Scholar
  123. Miras AD, Jackson RN, Jackson SN, Goldstone AP, Olbers T, Hackenberg T, Spector AC, Le Roux CW (2012) Gastric bypass surgery for obesity decreases the reward value of a sweet-fat stimulus as assessed in a progressive ratio task. Am J Clin Nutr 96:467–473PubMedCrossRefGoogle Scholar
  124. Mojsov S, Weir GC, Habener JF (1987) Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 79:616–619PubMedPubMedCentralCrossRefGoogle Scholar
  125. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, O’Rahilly S (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387:903–908PubMedCrossRefGoogle Scholar
  126. Morínigo R, Moizé V, Musri M, Lacy AM, Navarro S, Marín JL, Delgado S, Casamitjana R, Vidal J (2006) Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab 91:1735–1740PubMedCrossRefGoogle Scholar
  127. Murphy KG, Bloom SR (2004) Gut hormones in the control of appetite. Exp Physiol 89:507–516PubMedCrossRefGoogle Scholar
  128. Nannipieri M, Baldi S, Mari A, Colligiani D, Guarino D, Camastra S, Barsotti E, Berta R, Moriconi D, Bellini R, Anselmino M, Ferrannini E (2013) Roux-en-Y gastric bypass and sleeve gastrectomy: mechanisms of diabetes remission and role of gut hormones. J Clin Endocrinol Metab 98(11):4391–4399PubMedCrossRefGoogle Scholar
  129. Neary NM, Goldstone AP, Bloom SR (2004) Appetite regulation: from the gut to the hypothalamus. Clin Endocrinol 60:153–160CrossRefGoogle Scholar
  130. Nijhuis J, van Dielen FMH, Buurman WA, Greve JWM (2004) Ghrelin, leptin and insulin levels after restrictive surgery: a 2-year follow-up study. Obes Surg 14:783–787PubMedCrossRefGoogle Scholar
  131. Nummenmaa L, Hirvonen J, Hannukainen JC, Immonen H, Lindroos MM, Salminen P, Nuutila P (2012) Dorsal striatum and its limbic connectivity mediate abnormal anticipatory reward processing in obesity. PLoS One 7(2):e31089PubMedPubMedCentralCrossRefGoogle Scholar
  132. Ochner CN, Kwok Y, Conceição E, Pantazatos SP, Puma LM, Carnell S, Teixeira J, Hirsch J, Geliebter A (2011) Selective reduction in neural responses to high calorie foods following gastric bypass surgery. Ann Surg 253:502–507PubMedPubMedCentralCrossRefGoogle Scholar
  133. Ochner CN, Stice E, Hutchins E, Afifi L, Geliebter A, Hirsch J, Teixeira J (2012) Relation between changes in neural Responsivity and reductions in desire to eat high-calorie foods following gastric bypass surgery. Neuroscience 209:128–135PubMedPubMedCentralCrossRefGoogle Scholar
  134. Orskov C (1992) Glucagon-like peptide-1, a new hormone of the entero-insular axis. Diabetologia 35:701–711PubMedGoogle Scholar
  135. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y (1999) Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 100:2473–2476PubMedCrossRefGoogle Scholar
  136. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y (2000) Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 102:1296–1301PubMedCrossRefGoogle Scholar
  137. Owyang C, Heldsinger A (2011) Vagal control of satiety and hormonal regulation of appetite. J Neurogastroenterol Motil 17:338–348PubMedPubMedCentralCrossRefGoogle Scholar
  138. Palmiter RD (2007) Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci 30:375–381PubMedCrossRefGoogle Scholar
  139. Papamargaritis D, le Roux CW, Sioka E, Koukoulis G, Tzovaras G, Zacharoulis D (2013) Changes in gut hormone profile and glucose homeostasis after laparoscopic sleeve gastrectomy. Surg Obes Relat Dis 9:192–201PubMedCrossRefGoogle Scholar
  140. Peterli R, Steinert RE, Woelnerhanssen B, Peters T, Christoffel-Courtin C, Gass M, Kern B, von Fluee M, Beglinger C (2012) Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes Surg 22:740–748PubMedPubMedCentralCrossRefGoogle Scholar
  141. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, Lau DCW, le Roux CW, Violante Ortiz R, Jensen CB, Wilding JPH (2015) A randomized, controlled trial of 3.0 mg of Liraglutide in weight management. N Engl J Med 373:11–22PubMedCrossRefGoogle Scholar
  142. Pohjalainen T, Rinne JO, Någren K, Lehikoinen P, Anttila K, Syvälahti EK, Hietala J (1998) The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol Psychiatry 3:256–260PubMedCrossRefGoogle Scholar
  143. Polak JM, Bloom SR, Kuzio M, Brown JC, Pearse AG (1973) Cellular localization of gastric inhibitory polypeptide in the duodenum and jejunum. Gut 14:284–288PubMedPubMedCentralCrossRefGoogle Scholar
  144. Prickett C, Brennan L, Stolwyk R (2015) Examining the relationship between obesity and cognitive function: a systematic literature review. Obes Res Clin Pract 9:93–113PubMedCrossRefGoogle Scholar
  145. Qi Y, Takahashi N, Hileman SM, Patel HR, Berg AH, Pajvani UB, Scherer PE, Ahima RS (2004) Adiponectin acts in the brain to decrease body weight. Nat Med 10:524–529PubMedCrossRefGoogle Scholar
  146. Raffaelli M, Iaconelli A, Nanni G, Guidone C, Callari C, Fernandez Real JM, Bellantone R, Mingrone G (2015) Effects of biliopancreatic diversion on diurnal leptin, insulin and free fatty acid levels. Br J Surg 102:682–690PubMedCrossRefGoogle Scholar
  147. Reddy IA, Wasserman DH, Ayala JE, Hasty AH, Abumrad NN, Galli A (2014) Striatal dopamine homeostasis is altered in mice following Roux-en-Y gastric bypass surgery. ACS Chem Neurosci 5:943–951PubMedPubMedCentralCrossRefGoogle Scholar
  148. Romanova IV, Ramos EJB, Xu Y, Quinn R, Chen C, George ZM, Inui A, Das U, Meguid MM (2004) Neurobiologic changes in the hypothalamus associated with weight loss after gastric bypass. J Am Coll Surg 199:887–895PubMedCrossRefGoogle Scholar
  149. Romero F, Nicolau J, Flores L, Casamitjana R, Ibarzabal A, Lacy A, Vidal J (2012) Comparable early changes in gastrointestinal hormones after sleeve gastrectomy and Roux-en-Y gastric bypass surgery for morbidly obese type 2 diabetic subjects. Surg Endosc 26:2231–2239PubMedCrossRefGoogle Scholar
  150. Rothemund Y, Preuschhof C, Bohner G, Bauknecht HC, Klingebiel R, Flor H, Klapp BF (2007) Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. NeuroImage 37:410–421PubMedCrossRefGoogle Scholar
  151. Sahu A (1998) Leptin decreases food intake induced by melanin-concentrating hormone (MCH), galanin (GAL) and neuropeptide Y (NPY) in the rat. Endocrinology 139:4739–4742PubMedCrossRefGoogle Scholar
  152. Sandoval D (2011) Bariatric surgeries: beyond restriction and malabsorption. Int J Obes (Lond) 35(Suppl 3):S45–S49CrossRefGoogle Scholar
  153. Sarson DL, Scopinaro N, Bloom SR (1981) Gut hormone changes after jejunoileal (JIB) or biliopancreatic (BPB) bypass surgery for morbid obesity. Int J Obes 5:471–480PubMedGoogle Scholar
  154. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD, Aminian A, Pothier CE, Kim ESH, Nissen SE, Kashyap SR (2014) Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes. N Engl J Med 370:2002–2013PubMedPubMedCentralCrossRefGoogle Scholar
  155. Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ (1989) Oxyntomodulin from distal gut. Role in regulation of gastric and pancreatic functions. Dig Dis Sci 34:1411–1419PubMedCrossRefGoogle Scholar
  156. Scholtz S, Miras AD, Chhina N, Prechtl CG, Sleeth ML, Daud NM, Ismail NA, Durighel G, Ahmed AR, Olbers T, Vincent RP, Alaghband-Zadeh J, Ghatei MA, Waldman AD, Frost GS, Bell JD, le Roux CW, Goldstone AP (2014) Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut 63:891–902PubMedCrossRefGoogle Scholar
  157. Scopinaro N (2006) Biliopancreatic diversion: mechanisms of action and long-term results. Obes Surg 16:683–689PubMedCrossRefGoogle Scholar
  158. Scopinaro N, Adami GF, Marinari GM, Gianetta E, Traverso E, Friedman D, Camerini G, Baschieri G, Simonelli A (1998) Biliopancreatic diversion. World J Surg 22:936–946PubMedCrossRefGoogle Scholar
  159. Shikora SA, Toouli J, Herrera MF, Kulseng B, Brancatisano R, Kow L, Pantoja JP, Johnsen G, Brancatisano A, Tweden KS, Knudson MB, Billingto CJ, Billingto CJ (2016) Intermittent vagal nerve block for improvements in obesity, cardiovascular risk factors, and glycemic control in patients with type 2 diabetes mellitus: 2-year results of the VBLOC DM2 study. Obes Surg 26:1021–1028PubMedCrossRefGoogle Scholar
  160. Sjöström L (2008) Bariatric surgery and reduction in morbidity and mortality: experiences from the SOS study. Int J Obes (Lond) 32(Suppl 7):S93–S97CrossRefGoogle Scholar
  161. Sjöström L (2013) Review of the key results from the Swedish obese subjects (SOS) trial—a prospective controlled intervention study of bariatric surgery. J Intern Med 273:219–234PubMedCrossRefGoogle Scholar
  162. Sousa S, Ribeiro O, Horácio JG, Faísca L (2012) Funções executivas em sujeitos candidatos e submetidos a cirurgia bariátrica. Psicol Saúde Doenças 13:389–398Google Scholar
  163. Spitznagel MB, Garcia S, Miller LA, Strain G, Devlin M, Wing R, Cohen R, Paul R, Crosby R, Mitchell JE, Gunstad J (2013) Cognitive function predicts weight loss after bariatric surgery. Surg Obes Relat Dis 9:453–459PubMedCrossRefGoogle Scholar
  164. Spitznagel MB, Hawkins M, Alosco M, Galioto R, Garcia S, Miller L, Gunstad J (2015) Neurocognitive effects of obesity and bariatric surgery. Eur Eat Disord Rev 23:488–495PubMedCrossRefGoogle Scholar
  165. Steele KE, Prokopowicz GP, Schweitzer MA, Magunsuon TH, Lidor AO, Kuwabawa H, Kumar A, Brasic J, Wong DF (2010) Alterations of central dopamine receptors before and after gastric bypass surgery. Obes Surg 20:369–374PubMedCrossRefGoogle Scholar
  166. Stefater MA, Pérez-Tilve D, Chambers AP, Wilson-Pérez HE, Sandoval DA, Berger J, Toure M, Tschöp M, Woods SC, Seeley RJ (2010) Sleeve gastrectomy induces loss of weight and fat mass in obese rats, but does not affect leptin sensitivity. Gastroenterology 138:2426–2436PubMedPubMedCentralCrossRefGoogle Scholar
  167. Szczypka MS, Kwok K, Brot MD, Marck BT, Matsumoto AM, Donahue BA, Palmiter RD (2001) Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron 30:819–828PubMedCrossRefGoogle Scholar
  168. Taminato T, Seino Y, Goto Y, Inoue Y, Kadowaki S (1977) Synthetic gastric inhibitory polypeptide. Stimulatory effect on insulin and glucagon secretion in the rat. Diabetes 26:480–484PubMedCrossRefGoogle Scholar
  169. Tatemoto K, Carlquist M, Mutt V (1982) Neuropeptide Y—a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296:659–660PubMedCrossRefGoogle Scholar
  170. Tatemoto K, Mutt V (1980) Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature 285:417–418PubMedCrossRefGoogle Scholar
  171. Thompson J, Thomas N, Singleton A, Piggott M, Lloyd S, Perry EK, Morris CM, Perry RH, Ferrier IN, Court JA (1997) D2 dopamine receptor gene (DRD2) Taq1 a polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics 7:479–484PubMedCrossRefGoogle Scholar
  172. Toda N, Ayajiki K, Okamura T (2014) Obesity-induced cerebral hypoperfusion derived from endothelial dysfunction: one of the risk factors for Alzheimer’s disease. Curr Alzheimer Res 11:733–744PubMedCrossRefGoogle Scholar
  173. Travagli RA, Anselmi L (2016) Vagal neurocircuitry and its influence on gastric motility. Nat Rev Gastroenterol Hepatol 13:389–401PubMedCrossRefPubMedCentralGoogle Scholar
  174. Tritos NA, Mun E, Bertkau A, Grayson R, Maratos-Flier E, Goldfine A (2003) Serum ghrelin levels in response to glucose load in obese subjects post-gastric bypass surgery. Obes Res 11:919–924PubMedCrossRefGoogle Scholar
  175. Tschöp M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407:908–913PubMedCrossRefGoogle Scholar
  176. Tschöp M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML (2001) Circulating ghrelin levels are decreased in human obesity. Diabetes 50:707–709PubMedCrossRefGoogle Scholar
  177. Turner DS, Shabaan A, Etheridge L, Marks V (1973) The effect of an intestinal polypeptide fraction on insulin release in the rat in vitro and in vivo. Endocrinology 93:1323–1328PubMedCrossRefGoogle Scholar
  178. Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CM, Meeran K, Choi SJ, Taylor GM, Heath MM, Lambert PD, Wilding JP, Smith DM, Ghatei MA, Herbert J, Bloom SR (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379:69–72PubMedCrossRefGoogle Scholar
  179. van der Zwaal EM, de Weijer BA, van de Giessen EM, Janssen I, Berends FJ, van de Laar A, Ackermans MT, Fliers E, la Fleur SE, Booij J, Serlie MJ (2016) Striatal dopamine D2/3 receptor availability increases after long-term bariatric surgery-induced weight loss. Eur Neuropsychopharmacol 26:1190–1200PubMedCrossRefGoogle Scholar
  180. Veedfald S, Plamboeck A, Deacon CF, Hartmann B, Knop FK, Vilsboll T, Holst JJ (2016) Cephalic phase secretion of insulin and other entero-pancreatic hormones in humans. Am J Physiol Gastrointest Liver Physiol 310:G43–G51PubMedGoogle Scholar
  181. Verdich C, Flint A, Gutzwiller J-P, Naslund E, Beglinger C, Hellstrøm PM, Long SJ, Morgan LM, Holst JJ, Astrup A (2001) A meta-analysis of the effect of glucagon-like peptide-1 (7–36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab 86:4382–4389PubMedGoogle Scholar
  182. Vidal J, De Hollanda A, Jiménez A (2016) GLP-1 is not the key mediator of the health benefits of metabolic surgery. Surg Obes Relat Dis 12:1225–1229PubMedCrossRefGoogle Scholar
  183. Vidal J, Jiménez A (2013) Diabetes remission following metabolic surgery: is GLP-1 the culprit? Curr Atheroscler Rep 15:357PubMedCrossRefGoogle Scholar
  184. Volkow ND, Wang G-J, Telang F, Fowler JS, Goldstein RZ, Alia-Klein N, Logan J, Wong C, Thanos PK, Ma Y, Pradhan K (2009) Inverse association between BMI and prefrontal metabolic activity in healthy adults. Obesity (Silver Spring) 17:60–65CrossRefGoogle Scholar
  185. Weismann RE, Johnson RE (1977) Fatal hepatic failure after jejunoileal bypass: clinical and laboratory evidence of prognostic significance. Am J Surg 134:253–258PubMedCrossRefGoogle Scholar
  186. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA (2001) Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86:1930–1935PubMedCrossRefGoogle Scholar
  187. Wilson-Pérez HE, Chambers AP, Ryan KK, Li B, Sandoval DA, Stoffers D, Drucker DJ, Pérez-Tilve D, Seeley RJ (2013) Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like peptide 1 receptor deficiency. Diabetes 62:2380–2385PubMedPubMedCentralCrossRefGoogle Scholar
  188. Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, Dhillo WS, Ghatei MA, Bloom SR (2001) Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 86:5992–5995PubMedCrossRefGoogle Scholar
  189. Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, Kennedy AR, Roberts GH, Morgan DG, Ghatei MA, Bloom SR (2000) The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 141:4325–4328PubMedCrossRefGoogle Scholar
  190. Wynne K, Bloom SR (2006) The role of oxyntomodulin and peptide tyrosine-tyrosine (PYY) in appetite control. Nat Clin Pract Endocrinol Metab 2:612–620PubMedCrossRefGoogle Scholar
  191. Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, Chen CL, Tai TY, Chuang LM (2001) Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab 86:3815–3819PubMedCrossRefGoogle Scholar
  192. Ye J, Hao Z, Mumphrey MB, Townsend RL, Patterson LM, Stylopoulos N, Münzberg H, Morrison CD, Drucker DJ, Berthoud H-R (2014) GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents. Am J Physiol Regul Integr Comp Physiol 306:R352–R362PubMedPubMedCentralCrossRefGoogle Scholar
  193. Yousseif A, Emmanuel J, Karra E, Millet Q, Elkalaawy M, Jenkinson AD, Hashemi M, Adamo M, Finer N, Fiennes AG, Withers DJ, Batterham RL (2014) Differential effects of laparoscopic sleeve gastrectomy and laparoscopic gastric bypass on appetite, circulating acyl-ghrelin, peptide YY3-36 and active GLP-1 levels in non-diabetic humans. Obes Surg 24:241–252PubMedCrossRefGoogle Scholar
  194. Zelissen PMJ, Stenlof K, Lean MEJ, Fogteloo J, Keulen ETP, Wilding J, Finer N, Rössner S, Lawrence E, Fletcher C, McCamish M, Author Group (2005) Effect of three treatment schedules of recombinant methionyl human leptin on body weight in obese adults: a randomized, placebo-controlled trial. Diabetes Obes Metab 7:755–761PubMedCrossRefGoogle Scholar
  195. Zhang Y, Ji G, Xu M, Cai W, Zhu Q, Qian L, Zhang YE, Yuan K, Liu J, Li Q, Cui G, Wang H, Zhao Q, Wu K, Fan D, Gold MS, Tian J, Tomasi D, Liu Y, Nie Y, Wang G-J (2016) Recovery of brain structural abnormalities in morbidly obese patients after bariatric surgery. Int J Obes 40:1558–1565CrossRefGoogle Scholar
  196. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Physiology, Institute for Biomedical Imaging and Life Sciences—IBILI, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  2. 2.Obesity CenterHospital da Luz de SetúbalSetúbalPortugal

Personalised recommendations