Function and Dysfunction of Adipose Tissue

  • Paulo MatafomeEmail author
  • Raquel Seiça
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 19)


Adipose tissue is an endocrine organ which is responsible for postprandial uptake of glucose and fatty acids, consequently producing a broad range of adipokines controlling several physiological functions like appetite, insulin sensitivity and secretion, immunity, coagulation, and vascular tone, among others. Many aspects of adipose tissue pathophysiology in metabolic diseases have been described in the last years. Recent data suggest two main factors for adipose tissue dysfunction: accumulation of nonesterified fatty acids and their secondary products and hypoxia. Both of these factors are thought to be on the basis of low-grade inflammatory activation, further increasing metabolic dysregulation in adipose tissue. In turn, inflammation is involved in the inhibition of substrate uptake, alteration of the secretory profile, stimulation of angiogenesis, and recruitment of further inflammatory cells, which creates an inflammatory feedback in the tissue and is responsible for long-term establishment of insulin resistance.


Nutrient storage Adipokines Lipid intermediates Hypoxia Inflammation Angiogenesis 


  1. Ahima RS (2005) Central actions of adipocyte hormones. Trends Endocrinol Metab 16:307–313PubMedCrossRefGoogle Scholar
  2. Ahima RS, Flier JS (2000) Leptin. Annu Rev Physiol 62:413–437PubMedCrossRefGoogle Scholar
  3. Arner P (2005) Human fat cell lipolysis: biochemistry, regulation and clinical role. Best Pract Res Clin Endocrinol Metab 19:471–482PubMedCrossRefGoogle Scholar
  4. Bento CF, Fernandes R, Matafome P, Sena C, Seiça R, Pereira P (2010a) Methylglyoxal-induced imbalance in the ratio of vascular endothelial growth factor to angiopoietin 2 secreted by retinal pigment epithelial cells leads to endothelial dysfunction. Exp Physiol 95:955–970PubMedCrossRefGoogle Scholar
  5. Bento CF, Fernandes R, Ramalho J, Marques C, Shang F, Taylor A, Pereira P (2010b) The chaperone-dependent ubiquitin ligase CHIP targets HIF-1α for degradation in the presence of methylglyoxal. PLoS One 5:1–13Google Scholar
  6. Blüher M, Mantzoros CS (2015) From leptin to other adipokines in health and disease: facts and expectations at the beginning of the 21st century. Metabolism 64(1):131–145PubMedCrossRefGoogle Scholar
  7. Boden G, She P, Mozzoli M, Cheung P, Gumireddy K, Reddy P, Xiang X, Luo Z, Ruderman N (2005) Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-κb pathway in rat liver. Diabetes 54:3458–3465PubMedCrossRefGoogle Scholar
  8. Bugianesi E, McCullough AJ, Marchesini G (2005) Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology 42:987–1000PubMedCrossRefGoogle Scholar
  9. Cao Y (2007) Angiogenesis modulates adipogenesis and obesity. J Clin Invest 117:2362–2368PubMedPubMedCentralCrossRefGoogle Scholar
  10. Carter JC, Church FC (2009) Obesity and breast cancer: the roles of peroxisome proliferator-activated receptor-gamma and plasminogen activator inhibitor-1. PPAR Res 2009:345320PubMedPubMedCentralGoogle Scholar
  11. Catalano S, Marsico S, Giordano C, Mauro L, Rizza P, Panno ML, Andò S (2003) Leptin enhances, via AP-1, expression of aromatase in the MCF-7 cell line. J Biol Chem 278:28668–28676PubMedCrossRefGoogle Scholar
  12. Chen B, Lam KSL, Wang Y, Wu D, Lam MC, Shen J et al (2006) Hypoxia dysregulates the production of adiponectin and plasminogen activator inhibitor-1 independent of reactive oxygen species in adipocytes. Biochem Biophys Res Commun 341:549–556PubMedCrossRefGoogle Scholar
  13. Christiaens V, Lijnen HR (2010) Angiogenesis and development of adipose tissue. Mol Cell Endocrinol 318:2–9PubMedCrossRefGoogle Scholar
  14. Corvera S, Gealekman O (2014) Adipose tissue angiogenesis: impact on obesity and type-2 diabetes. Biochim Biophys Acta 1842:463–472PubMedCrossRefGoogle Scholar
  15. De Souza Batista CM, Yang RZ, Lee MJ, Glynn NM, DZ Y, Pray J et al (2007) Omentin plasma levels and gene expression are decreased in obesity. Diabetes 56:1655–1661PubMedCrossRefGoogle Scholar
  16. Ding M, Rzucidlo EM, Davey JC, Xie Y, Liu R, Jin Y, Stavola L, Martin KA (2012) Adiponectin in the heart and vascular system. Vitam Horm 90:289–319PubMedCrossRefGoogle Scholar
  17. Einstein FH, Huffman DM, Fishman S, Jerschow E, Heo HJ, Atzmon G, Schechter C, Barzilai N, Muzumdar RH (2010) Aging per se increases the susceptibility to free fatty acid-induced insulin resistance. J Gerontol A Biol Sci Med Sci 65(8):800–808PubMedCrossRefGoogle Scholar
  18. Fasshauer M, Blüher M (2015) Adipokines in health and disease. Trends Pharmacol Sci 36(7):461–470PubMedCrossRefGoogle Scholar
  19. Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316(2):129–139PubMedCrossRefGoogle Scholar
  20. Gallí M, Van Gool F, Rongvaux A, Andris F, Leo O (2010) The nicotinamide phosphoribosyltransferase: a molecular link between metabolism, inflammation, and cancer. Cancer Res 70(1):8–11PubMedCrossRefGoogle Scholar
  21. Gealekman O, Burkart A, Chouinard M, Nicoloro SM, Straubhaar J, Corvera S (2008) Enhanced angiogenesis in obesity and in response to PPARgamma activators through adipocyte VEGF and ANGPTL4 production. Am J Physiol Endocrinol Metab 295(5):E1056–E1064PubMedPubMedCentralCrossRefGoogle Scholar
  22. Gealekman O, Guseva N, Gurav K, Gusev A, Hartigan C, Thompson M, Malkani S, Corvera S (2012) Effect of rosiglitazone on capillary density and angiogenesis in adipose tissue of normoglycaemic humans in a randomised controlled trial. Diabetologia 55:2794–2799PubMedPubMedCentralCrossRefGoogle Scholar
  23. Gentil C, Le Jan S, Philippe J, Leibowitch J, Sonigo P, Germain S, Piétri-Rouxel F (2006) Is oxygen a key factor in the lipodystrophy phenotype? Lipids Health Dis 5:1–11CrossRefGoogle Scholar
  24. Glassford AJ, Yue P, Sheikh AY, Chun HJ, Zarafshar S, Chan DA, Reaven GM, Quertermous T, Tsao PS (2007) HIF-1 regulates hypoxia- and insulin-induced expression of apelin in adipocytes. Am J Physiol Endocrinol Metab 293(6):E1590–E1596PubMedPubMedCentralCrossRefGoogle Scholar
  25. Golay A, Ybarra J (2005) Link between obesity and type 2 diabetes. Best Pract Res Clin Endocrinol Metab 19(4):649–663PubMedCrossRefGoogle Scholar
  26. Gómez-Ambrosi J, Catalán V, Rodríguez A, Ramírez B, Silva C, Gil MJ, Salvador J, Frühbeck G (2010) Involvement of serum vascular endothelial growth factor family members in the development of obesity in mice and humans. J Nutr Biochem 21(8):774–780PubMedCrossRefGoogle Scholar
  27. Goossens GH (2008) The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav 94(2):206–218PubMedCrossRefGoogle Scholar
  28. Goossens GH, Bizzarri A, Venteclef N, Essers Y, Cleutjens JP, Konings E, Jocken JW, Cajlakovic M, Ribitsch V, Clément K, Blaak EE (2011) Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation 124(1):67–76PubMedCrossRefGoogle Scholar
  29. Guilherme A, Virbasius J, Puri V, Czech MP (2008a) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9(5):367–377PubMedPubMedCentralCrossRefGoogle Scholar
  30. Guilherme A, Virbasius JV, Puri V, Czech MP (2008b) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 114:715–728Google Scholar
  31. Halberg N, Khan T, Trujillo ME, Wernstedt-Asterholm I, Attie AD, Sherwani S et al (2009) Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol 29(16):4467–4483PubMedPubMedCentralCrossRefGoogle Scholar
  32. Handisurya A, Riedl M, Vila G, Maier C, Clodi M, Prikoszovich T et al (2010) Serum vaspin concentrations in relation to insulin sensitivity following RYGB-induced weight loss. Obes Surg 20(2):198–203PubMedCrossRefGoogle Scholar
  33. Hausman GJ, Richardson RL (2004) Adipose tissue angiogenesis. J Anim Sci 82:925–934PubMedCrossRefGoogle Scholar
  34. He Q, Gao Z, Yin J, Zhang J, Yun Z, Ye J (2011) Regulation of HIF-1{alpha} activity in adipose tissue by obesity-associated factors: adipogenesis, insulin, and hypoxia. Am J Physiol Endocrinol Metab 300(5):E877–E885PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K et al (2007) Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56:901–911PubMedCrossRefGoogle Scholar
  36. Howard JK, Flier JS (2006) Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrinol Metab 17(9):365–371PubMedCrossRefGoogle Scholar
  37. Imrie H, Abbas A, Kearney M (2010) Insulin resistance, lipotoxicity and endothelial dysfunction. Biochim Biophys Acta 1801(3):320–326PubMedCrossRefGoogle Scholar
  38. Jeong E, Youn BS, Kim DW, Kim EH, Park JW, Namkoong C et al (2010) Circadian rhythm of serum vaspin in healthy male volunteers: relation to meals. J Clin Endocrinol Metab 95(4):1869–1875PubMedCrossRefGoogle Scholar
  39. Juge-Aubry CE, Henrichot E, C a M (2005a) Adipose tissue: a regulator of inflammation. Best Pract Res Clin Endocrinol Metab 19(4):547–566PubMedCrossRefGoogle Scholar
  40. Juge-Aubry CE, Somm E, Pernin A, Alizadeh N, Giusti V, Dayer J-M, Meier C (2005b) Adipose tissue is a regulated source of interleukin-10. Cytokine 29:270–274PubMedGoogle Scholar
  41. Kamon J, Yamauchi T, Terauchi Y, Kubota N, Kadowaki T (2003) The mechanisms by which PPARgamma and adiponectin regulate glucose and lipid metabolism. Nihon yakurigaku zasshi Folia pharmacologica Japonica 122(4):294–300PubMedCrossRefGoogle Scholar
  42. Kaneto H, Katakami N, Matsuhisa M, Matsuoka T (2010) Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediat Inflamm 2010:1–11CrossRefGoogle Scholar
  43. Kawano Y, Cohen DE (2013) Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol 48(4):434–441PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kiess W, Petzold S, Töpfer M, Garten A, Blüher S, Kapellen T, Körner A, Kratzsch J (2008) Adipocytes and adipose tissue. Best Pract Res Clin Endocrinol Metab 22(1):135–153PubMedCrossRefGoogle Scholar
  45. Klöting N, Berndt J, Kralisch S, Kovacs P, Fasshauer M, Schön MR, Stumvoll M, Blüher M (2006) Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes. Biochem Biophys Res Commun 339(1):430–436PubMedCrossRefGoogle Scholar
  46. Langin D (2006) Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol Res 53(6):482–491PubMedCrossRefGoogle Scholar
  47. Laubner K, Kieffer TJ, Lam NT, Niu X, Jakob F, Seufert J (2005) Inhibition of preproinsulin gene expression by leptin induction of suppressor of cytokine signaling 3 in pancreatic beta-cells. Diabetes 54:3410–3417PubMedCrossRefGoogle Scholar
  48. Lazar MA (2007) Resistin- and obesity-associated metabolic diseases. Horm Metab Res 39(10):710–716PubMedCrossRefGoogle Scholar
  49. Lee TS, Lin CY, Tsai JY, YL W, KH S, KY L et al (2009) Resistin increases lipid accumulation by affecting class a scavenger receptor, CD36 and ATP-binding cassette transporter-A1 in macrophages. Life Sci 84:97–104PubMedCrossRefGoogle Scholar
  50. Lee J-Y, Hashizaki H, Goto T, Sakamoto T, Takahashi N, Kawada T (2011) Activation of peroxisome proliferator-activated receptor-α enhances fatty acid oxidation in human adipocytes. Biochem Biophys Res Commun 407(4):818–822PubMedCrossRefGoogle Scholar
  51. Letra L, Santana I, Seiça R (2014) Obesity as a risk factor for Alzheimer’s disease: the role of adipocytokines. Metab Brain Dis 29:563–568PubMedCrossRefGoogle Scholar
  52. Lijnen HR (2008) Angiogenesis and obesity. Cardiovasc Res 78:286–293PubMedCrossRefGoogle Scholar
  53. Lonardo A, Ballestri S, Marchesini G, Angulo P, Loria P (2015) Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig Liver Dis 47(3):181–190PubMedCrossRefGoogle Scholar
  54. Lorincz AM, Sukumar S (2006) Molecular links between obesity and breast cancer. Endocr Relat Cancer 13(2):279–292PubMedCrossRefGoogle Scholar
  55. Mannerås-Holm L, Krook A (2012) Targeting adipose tissue angiogenesis to enhance insulin sensitivity. Diabetologia 55:2562–2564PubMedPubMedCentralCrossRefGoogle Scholar
  56. Matafome P (2013) Common mechanisms of dysfunctional adipose tissue and obesity-related cancers. Diabetes Metab Res Rev 29(4):285–295PubMedCrossRefGoogle Scholar
  57. Matafome P, Santos-Silva D, Crisóstomo J, Rodrigues T, Rodrigues L, Sena CM, Pereira P, Seiça R (2012) Methylglyoxal causes structural and functional alterations in adipose tissue independently of obesity. Arch Physiol Biochem 118(2):58–68PubMedCrossRefGoogle Scholar
  58. Maury E, Brichard SM (2010) Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol 314(1):1–16PubMedCrossRefGoogle Scholar
  59. Meier U, Gressner AM (2004) Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin Chem 50(9):1511–1525PubMedCrossRefGoogle Scholar
  60. Min SY, Kady J, Nam M, Rojas-Rodriguez R, Berkenwald A, Kim JH et al (2016) Human “brite/beige” adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat Med 22(3):312–318PubMedPubMedCentralCrossRefGoogle Scholar
  61. Minet E, Michel G, Mottet D (2001) Transduction pathways involved in hypoxia-inducible factor-1 phosphorylation and activation. Free Radic Biol Med 31(7):847–855PubMedCrossRefGoogle Scholar
  62. Mocan Hognogi LD, Simiti LV (2016) The cardiovascular impact of visfatin—an inflammation predictor biomarker in metabolic syndrome. Clujul Medical 89:322CrossRefGoogle Scholar
  63. Moeschel K, Beck A, Weigert C, Lammers R, Kalbacher H, Voelter W, Schleicher ED, Häring H-U, Lehmann R (2004) Protein kinase C-zeta-induced phosphorylation of Ser318 in insulin receptor substrate-1 (IRS-1) attenuates the interaction with the insulin receptor and the tyrosine phosphorylation of IRS-1. J Biol Chem 279(24):25157–25163PubMedCrossRefGoogle Scholar
  64. Moreno-Navarrete JM, Catalán V, Ortega F, Gómez-Ambrosi J, Ricart W, Frühbeck G, Fernández-Real JM (2010) Circulating omentin concentration increases after weight loss. Nutr Metab (Lond) 7:27CrossRefGoogle Scholar
  65. Münzberg H, Björnholm M, Bates SH, Myers MG (2005) Leptin receptor action and mechanisms of leptin resistance. Cell Mol Life Sci 62(6):642–652PubMedCrossRefGoogle Scholar
  66. Nawrocki AR, Rajala MW, Tomas E, Pajvani UB, Saha AK, Trumbauer ME et al (2006) Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists. J Biol Chem 281(5):2654–2660PubMedCrossRefGoogle Scholar
  67. Neels JG, Thinnes T, Loskutoff DJ (2004) Angiogenesis in an in vivo model of adipose tissue development. FASEB J 18:983–1002PubMedGoogle Scholar
  68. Nielsen NB, Højbjerre L, Sonne MP, Alibegovic AC, Vaag A, Dela F, Stallknecht B (2009) Interstitial concentrations of adipokines in subcutaneous abdominal and femoral adipose tissue. Regul Pept 155(1–3):39–45PubMedCrossRefGoogle Scholar
  69. Niu J, Azfer A, Zhelyabovska O, Fatma S, Kolattukudy PE (2008) Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J Biol Chem 283(21):14542–14551PubMedPubMedCentralCrossRefGoogle Scholar
  70. Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246PubMedCrossRefGoogle Scholar
  71. Oliveira AG, Carvalho BM, Tobar N, Ropelle ER, Pauli JR, R a B, Guadagnini D, Carvalheira JBC, Saad MJA (2011) Physical exercise reduces circulating lipopolysaccharide and TLR4 activation and improves insulin signaling in tissues of DIO rats. Diabetes 60:784–796PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y et al (2001) Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class a scavenger receptor expression in human monocyte-derived macrophages. Circulation 103:1057–1063PubMedCrossRefGoogle Scholar
  73. Pais R, Silaghi H, Silaghi AC, Rusu ML, Dumitrascu DL (2009) Metabolic syndrome and risk of subsequent colorectal cancer. World J Gastroenterol 15(41):5141–5148PubMedPubMedCentralCrossRefGoogle Scholar
  74. Pang C, Gao Z, Yin J, Zhang J, Jia W, Ye J (2008) Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. Am J Physiol Endocrinol Metab 295(2):E313–E322PubMedPubMedCentralCrossRefGoogle Scholar
  75. Park M, Sweeney G (2013) Direct effects of adipokines on the heart: focus on adiponectin. Heart Fail Rev 18(5):631–644PubMedCrossRefGoogle Scholar
  76. Pasarica M, Rood J, Ravussin E, Schwarz J-M, Smith SR, Redman LM (2010) Reduced oxygenation in human obese adipose tissue is associated with impaired insulin suppression of lipolysis. J Clin Endocrinol Metab 95(8):4052–4055PubMedPubMedCentralCrossRefGoogle Scholar
  77. Pitkin SL, Maguire JJ, Bonner TI, Davenport AP (2010) International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacol Rev 62(3):331–342PubMedCrossRefGoogle Scholar
  78. Qatanani M, Lazar MA (2007) Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev 21(12):1443–1455PubMedCrossRefGoogle Scholar
  79. Qatanani M, Szwergold N (2009) Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice. J Clin Invest 119(3):531–539PubMedPubMedCentralCrossRefGoogle Scholar
  80. Rajala MW, Scherer PE (2003) Minireview: the adipocyte—at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 144:3765–3773PubMedCrossRefGoogle Scholar
  81. Ram VJ (2003) Therapeutic significance of peroxisome proliferator-activated receptor modulators in diabetes. Drug Today 39:609–632CrossRefGoogle Scholar
  82. Rausch ME, Weisberg S, Vardhana P, Tortoriello D V (2008) Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes 32:451–463CrossRefGoogle Scholar
  83. Regazzetti C, Peraldi P, Grémeaux T, Najem-Lendom R, Ben-Sahra I, Cormont M et al (2009) Hypoxia decreases insulin signaling pathways in adipocytes. Diabetes 58:95–103PubMedPubMedCentralCrossRefGoogle Scholar
  84. Robertson SA, Rae CJ, Graham A (2009) Resistin: TWEAKing angiogenesis. Atherosclerosis 203:34–37PubMedCrossRefGoogle Scholar
  85. Rutkowski JM, Davis KE, Scherer PE (2009) Mechanisms of obesity and related pathologies: the macro- and microcirculation of adipose tissue. FEBS J 276:5738–5746PubMedPubMedCentralCrossRefGoogle Scholar
  86. Saddi-Rosa P, Oliveira CS, Giuffrida FM, Reis AF (2010) Visfatin, glucose metabolism and vascular disease: a review of evidence. Diabetol Metab Syndr 2:21PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sandu O, Song K, Cai W, Zheng F, Uribarri J, Vlassara H (2005) Insulin resistance and type 2 diabetes in high-fat—fed mice are linked to high glycotoxin intake. Diabetes 54(8):2314–2319PubMedCrossRefGoogle Scholar
  88. Schäffler A, Neumeier M, Herfarth H, Fürst A, Schölmerich J, Büchler C (2005) Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue. Biochim Biophys Acta 1732:96–102PubMedCrossRefGoogle Scholar
  89. Schäffler A, Schölmerich J, Salzberger B (2007) Adipose tissue as an immunological organ: toll-like receptors, C1q/TNFs and CTRPs. Trends Immunol 28:393–399PubMedCrossRefGoogle Scholar
  90. Smekal A, Vaclavik J (2017) Adipokines and cardiovascular disease: a comprehensive review. Biomed Pap 161:31–40Google Scholar
  91. Smith CCT, Yellon DM (2011) Adipocytokines, cardiovascular pathophysiology and myocardial protection. Pharmacol Ther 129:206–219PubMedCrossRefGoogle Scholar
  92. Suga H, Eto H, Aoi N, Kato H, Araki J, Doi K, Higashino T, Yoshimura K (2010) Adipose tissue remodeling under ischemia: death of adipocytes and activation of stem/progenitor cells. Plast Reconstr Surg 126:1911–1923PubMedCrossRefGoogle Scholar
  93. Surmi BK, Hasty AH (2010) The role of chemokines in recruitment of immune cells to the artery wall and adipose tissue. Vasc Pharmacol 52:27–36CrossRefGoogle Scholar
  94. Takeuchi T, Adachi Y, Ohtsuki Y, Furihata M (2007) Adiponectin receptors, with special focus on the role of the third receptor, T-cadherin, in vascular disease. Med Mol Morphol 40:115–120PubMedCrossRefGoogle Scholar
  95. Tam J, Duda DG, Perentes JY, Quadri RS, Fukumura D, Jain RK (2009) Blockade of VEGFR2 and not VEGFR1 can limit diet-induced fat tissue expansion: role of local versus bone marrow-derived endothelial cells. PLoS One 4:e4974PubMedPubMedCentralCrossRefGoogle Scholar
  96. Tamori Y, Masugi J, Nishino N, Kasuga M (2002) Role of peroxisome proliferator-activated receptor-gamma in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes 51:2045–2055PubMedCrossRefGoogle Scholar
  97. Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6:772–783PubMedCrossRefGoogle Scholar
  98. Tinahones FJ, Coín-Aragüez L, Mayas MD, Garcia-Fuentes E, Hurtado-Del-Pozo C, Vendrell J et al (2012) Obesity-associated insulin resistance is correlated to adipose tissue vascular endothelial growth factors and metalloproteinase levels. BMC Physiol 12:4PubMedPubMedCentralCrossRefGoogle Scholar
  99. Tran K, Gealekman O, Frontini A, Zingaretti M, Morroni M, Giordano A et al (2012) The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab 15:222–229PubMedPubMedCentralCrossRefGoogle Scholar
  100. Trayhurn P (2014) Hypoxia and adipocyte physiology: implications for adipose tissue dysfunction in obesity. Annu Rev Nutr 34:207–236PubMedCrossRefGoogle Scholar
  101. Trayhurn P, Wood IS (2004) Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 92:347–355PubMedCrossRefGoogle Scholar
  102. Trayhurn P, Wang B, Wood IS (2008a) Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutr 100:227–235PubMedCrossRefGoogle Scholar
  103. Trayhurn P, Wang B, Wood IS (2008b) Hypoxia and the endocrine and signalling role of white adipose tissue. Arch Physiol Biochem 114:267–276PubMedCrossRefGoogle Scholar
  104. Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza GL, Van Obberghen E (2002) Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem 277:27975–27981PubMedCrossRefGoogle Scholar
  105. van Uden P, Kenneth NS, Rocha S, Van UP (2008) Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem J 412:477–484PubMedPubMedCentralCrossRefGoogle Scholar
  106. Ueki K, Kondo T, Kahn C (2004a) Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins. Mol Cell Biol 24:5434–5446PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ueki K, Kondo T, Tseng Y-H, Kahn CR (2004b) Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc Natl Acad Sci U S A 101:10422–10427PubMedPubMedCentralCrossRefGoogle Scholar
  108. Vona-Davis L, Rose DP (2007) Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression. Endocr Relat Cancer 14:189–206PubMedCrossRefGoogle Scholar
  109. Vona-Davis L, Rose DP (2009) Angiogenesis, adipokines and breast cancer. Cytokine Growth Factor Rev 20:193–201PubMedCrossRefGoogle Scholar
  110. Wang B, Wood IS, Trayhurn P (2007) Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch: Eur J Physiol 455:479–492CrossRefGoogle Scholar
  111. Wang Y, Nishina P, Naggert J (2009) Degradation of IRS1 leads to impaired glucose uptake in adipose tissue of the type 2 diabetes mouse model TALLYHO/Jng. J Endocrinol 203:65–74PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wellen K, Hotamisligil G (2003) Obesity-induced inflammatory changes in adipose tissue. J Clin Investig 112:1785–1788PubMedPubMedCentralCrossRefGoogle Scholar
  113. Wellen K, Hotamisligil G (2005) Inflammation, stress, and diabetes. J Clin Investig 115:1111–1119PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wood IS, Wang B, Lorente-cebrián S, Trayhurn P (2007) Hypoxia increases expression of selective facilitative glucose transporters (GLUT) and 2-deoxy-D-glucose uptake in human adipocytes. Biochem Biophys Res Commun 361:468–473PubMedCrossRefGoogle Scholar
  115. Wood IS, Heredia FP, Wang B, Trayhurn P (2009) Cellular hypoxia and adipose tissue dysfunction in obesity. Proc Nutr Soc 68:370–377PubMedCrossRefGoogle Scholar
  116. Xu A, Wang Y, Keshaw H, Xu L, Lam K, Cooper G (2003) The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Investig 112:91–100PubMedPubMedCentralCrossRefGoogle Scholar
  117. Yamakawa M, Liu LX, Date T, Belanger AJ, Vincent KA, Akita GY et al (2003) Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 93:664–673PubMedCrossRefGoogle Scholar
  118. Yamauchi T, Hara K, Kubota N, Terauchi Y, Tobe K, Froguel P, Nagai R, Kadowaki T (2003) Dual roles of adiponectin/Acrp30 in vivo as an anti-diabetic and anti-atherogenic adipokine. Curr Drug Targets Immune Endocr Metabol Disord 3:243–254PubMedCrossRefGoogle Scholar
  119. Yamawaki H, Tsubaki N, Mukohda M, Okada M, Hara Y (2010) Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels. Biochem Biophys Res Commun 393:668–672PubMedCrossRefGoogle Scholar
  120. Yang R-Z, Lee M-J, Hu H, Pray J, H-B W, Hansen BC et al (2006) Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab 290:E1253–E1261PubMedCrossRefGoogle Scholar
  121. Ye J (2009) Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes 33:54–66CrossRefGoogle Scholar
  122. Ye J, Gao Z, Yin J, He Q (2007) Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 293:E1118–E1128PubMedCrossRefGoogle Scholar
  123. Yin K, Liao D, Tang C (2010) ATP-binding membrane cassette transporter A1 (ABCA1): a possible link between inflammation and reverse cholesterol transport. Mol Med 16:438–449PubMedPubMedCentralCrossRefGoogle Scholar
  124. Yki-Järvinen H (2005) Fat in the liver and insulin resistance. Ann Med 37:347–356PubMedCrossRefGoogle Scholar
  125. Yki-Järvinen H (2015) Nutritional modulation of non-alcoholic fatty liver disease and insulin resistance. Forum Nutr 7:9127–9138Google Scholar
  126. Yki-Järvinen H, Westerbacka J (2005) The fatty liver and insulin resistance. Curr Mol Med 5:287–295PubMedCrossRefGoogle Scholar
  127. Zhang X, Lam K, Ye H, Chung S, Zhou M, Wang Y, Xu A (2010) Adipose tissue-specific inhibition of hypoxia-inducible factor 1α induces obesity and glucose intolerance by impeding energy expenditure in mice. J Biol Chem 285:32869–32877PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Physiology, Institute for Biomedical Imaging and Life Sciences—IBILI, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  2. 2.Department of Complementary SciencesCoimbra Health School (ESTeSC), Instituto Politécnico de CoimbraCoimbraPortugal

Personalised recommendations