Supporting the Change to Digitalized Production Environments Through Learning Organization Development

  • Christoph FischerEmail author
  • Alexander Pöhler
Part of the Professional and Practice-based Learning book series (PPBL, volume 21)


The digitalization of industrial environments results in autonomously acting production systems. The question if and where humans can be a part of this new industrial environment has yet to be answered. Since the process to a fully digitalized industry is not yet finished, several possible scenarios of human-machine production environments are being discussed. All these scenarios result in systems with more capabilities that require humans to either control those systems or be controlled by them. The change process is inevitable and has to be organized in a way that supports technological advancement as well as human integration. This article tries to determine whether the concept of a learning organization that has a strong learning culture can help to foster the change to a digitalized industrial environment without restraining human control competencies over the production system.


Industrial change Workplace digitalization Learning culture Commitment to change 


  1. Acatech. (2012). Cyber-physical systems: Innovationsmotoren für Mobilität, Gesundheit, Energie und Produktion [Cyber-physical systems: Innovation generators for mobility health and energy production]. Dordrecht: Springer.Google Scholar
  2. Ahma, H., & Gelaidan, H. (2011). Organisational culture, leadership styles and employee’s affective commitment to change: A case of Yemen public sector. The Journal of Organizational Management Studies, 2011, 1–10.CrossRefGoogle Scholar
  3. Bauer, W., Gerlach, S., Hämmerle, M., & Strölin, T. (2014). Rule base for operative planning and control of flexible labour hours. IFAC Proceedings, 47(3), 10760–10765.CrossRefGoogle Scholar
  4. Bauer, D., Wutzke, R., Bauernhansl, T. (2016). Wear@Work – a new approach for data acquisition using wearables. Procedia CIRP, 50. CIRP Design Conference 2016 Stockholm (pp.529–534).Google Scholar
  5. Bernerth, J. B., Armenakis, A. A., Feild, H. S., & Walker, H. J. (2007). Justice, cynicism, and commitment: A study of important organizational change variables. The Journal of Applied Behavioral Science, 43(3), 303–326.CrossRefGoogle Scholar
  6. Bettenhausen, K., & Kowalewski, S. (2013). Cyber-physical systems: Chancen und Nutzen aus Sicht der Automation. VDI/VDE-Gesellschaft Mess-und Automatisierungstechnik [Cyber-physical systems: Opportunities and benefits from the automation perspective].Google Scholar
  7. Bezak, P., Bozek, P., & Yuri, N. (2014). Advanced robotic grasping system using deep learning. Modelling of mechanical and mechatronic systems. Procedia Engineering, 96, 10–20.CrossRefGoogle Scholar
  8. Bochum, U. (2015). Gewerkschaftliche Positionen in Bezug auf “Industrie 4.0” [Union positions on “Industry 4.0”]. In A. Botthof & E. A. Hartmann (Eds.), Zukunft der Arbeit in Industrie 4.0 (pp. 31–44). Berlin: Springer Berlin Heidelberg.CrossRefGoogle Scholar
  9. Botthof, A., & Hartmann, E. A. (Eds.). (2015). Zukunft der Arbeit in Industrie 4.0 [The future of work in industry 4.0]. Wiesbaden: Springer Vieweg Verlag.Google Scholar
  10. Boud, A.C., Haniff, D.J., Baber, C., & Steiner, S.J. (1999). Virtual reality and augmented reality as a training tool for assembly tasks. 1999 IEEE international conference on information visualization (pp. 32–36).Google Scholar
  11. Choi, M. (2011). Employees’ attitudes toward organizational change: A literature review. Human Resource Management, 50(4), 479–500.CrossRefGoogle Scholar
  12. Frey, C. B., & Osborne, M. A. (2013). The future of employment – How susceptible are jobs to computerisation (77). Oxford: Oxford Martin Programme on Technology & Employment. Retrieved from
  13. Ganschar, O., Gerlach, S., Hämmerle, M., Krause, T., & Schlund, S. (2013). In D. Spath (Ed.), Produktionsarbeit der Zukunft-Industrie 4.0 [Production work of the future – Industry 4.0] (pp. 50–56). Stuttgart: Fraunhofer Verlag.Google Scholar
  14. Gavish, N., Gutiérrez, T., Webel, S., Rodríguez, J., Peveri, M., Bockholt, U., & Tecchia, F. (2015). Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interactive Learning Environments, 2015, 23(6), 778–798.CrossRefGoogle Scholar
  15. Gronau, N. (2013). Anwendungszentrum Industrie 4.0 [Application center industry 4.0]. In H. Lödding & A. Friedewald (Eds.), Produzieren in Deutschland – Wettbewerbsfähigkeit im 21. Jahrhundert (pp. 277–298). Gito Verlag.Google Scholar
  16. Hendry, C. (1996). Understanding and creating whole organizational change through learning theory. Human Relations, 49(5), 621–641.CrossRefGoogle Scholar
  17. Herold, D. M., Fedor, D. B., & Caldwell, S. D. (2007). Beyond change management: A multilevel investigation of contextual and personal influences on employees’ commitment to change. Journal of Applied Psychology, 92(4), 942–951.CrossRefGoogle Scholar
  18. Herscovitch, L., & Meyer, J. P. (2002). Commitment to organizational change: Extension of a three-component model. Journal of Applied Psychology, 87(3), 474–487.CrossRefGoogle Scholar
  19. Hořejší, P. (2015). Augmented reality system for virtual training of parts assembly. Procedia Engineering, 2015(100), 699–706.Google Scholar
  20. Kagermann, H. (2015). Change through digitization – value creation in the age of industry 4.0. In H. Albach, H. Meffert, A. Pinkwart, & R. Reichwald (Eds.), Management of permanent change (pp. 23–45). Wiesbaden: Springer Fachmedien Wiesbaden.Google Scholar
  21. Kiener, S. (2012). Produktions-Management: Grundlagen der Produktionsplanung und –steuerung [Production management: Principles of production planning and control]. München: Oldenbourg Verlag.Google Scholar
  22. Manzei, C., Schleupner, L., Heinze, R.. (2016). Industrie 4.0 im internationalen Kontext. Kernkonzepte, Ergebnisse, Trends [Industry 4.0 in international context. Key concepts, results and trends]. VDE Verlag.Google Scholar
  23. Marsick, V. J., & Watkins, K. E. (2003). Demonstrating the value of an organization’s learning culture: The dimensions of the learning organization questionnaire. Advances in Developing Human Resources, 5(2), 132–151.CrossRefGoogle Scholar
  24. Mazmanian, P. E., & Mazmanian, P. M. (1999). Commitment to change: Theoretical foundations, methods, and outcomes. Journal of Continuing Education in the Health Professions, 19(4), 200–207.CrossRefGoogle Scholar
  25. Meyer, J. P., & Allen, N. J. (1991). A three-component conceptualization of organizational commitment. Human Resource Management Review, 1(1), 61–89.CrossRefGoogle Scholar
  26. Meyer, J. P., & Herscovitch, L. (2001). Commitment in the workplace: Toward a general model. Human Resource Management Review, 11(3), 299–326.CrossRefGoogle Scholar
  27. Michaelis, B., Stegmaier, R., & Sonntag, K. (2010). Shedding light on followers’ innovation implementation behavior: The role of transformational leadership, commitment to change, and climate for initiative. Journal of Managerial Psychology, 25(4), 408–429.CrossRefGoogle Scholar
  28. Oreg, S. (2003). Resistance to change: Developing an individual differences measure. Journal of Applied Psychology, 88(4), 680–693.CrossRefGoogle Scholar
  29. Paelke, V., Röcker, C., Koch, N., Flatt, H., & Büttner, S. (2015). User interfaces for cyber-physical systems. at-Automatisierungstechnik, 63(10), 833–843.CrossRefGoogle Scholar
  30. Piderit, S. K. (2000). Rethinking resistance and recognizing ambivalence: A multidimensional view of attitudes toward an organizational change. Academy of Management Review, 25(4), 783–794.Google Scholar
  31. Roth, A., & Siepmann, D. (2016). Industrie 4.0 – Ausblick [Industry 4.0 – Prospects]. In A. Roth (Ed.), Einführung und Umsetzung von Industrie 4.0 (pp. 247–260). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  32. Sarode, N., & Bhatia, S. (2010). Facial expression recognition. International Journal on Computer Science and Engineering, 2(5), 1552–1557.Google Scholar
  33. Schein, E. H. (2004). Organizational culture and leadership. San Francisco: Jossey-Bass.Google Scholar
  34. Sonntag, K., Stegmaier, R., Schaper, N., & Friebe, J. (2004). Dem Lernen im Unternehmen auf der Spur [Detecting learning in organizations]. Unterrichtswissenschaft, 32, 104–127.Google Scholar
  35. Sonntag, K., Schaper, N., & Friebe, J. (2005). Erfassung und Bewertung von Merkmalen unternehmensbezogener Lernkulturen [Recognition and measurement of organisational learning culture indicators]. In Arbeitsgemeinschaft QUEM (Ed.), Kompetenzmessung im Unternehmen: Lernkultur- und Kompetenzanalysen im betrieblichen Umfeld (Vol. 18, pp. 19–339). Münster: Waxmann.Google Scholar
  36. Töniges, T., Ötting, S., Wrede, B., Maier, G. W., & Sagerer, G. (2017). An emerging decision authority: Adaptive cyber-physical system design for fair human-machine interaction and decision processes. Cyber-physical systems: Foundations, principles, and applications. In H. Song, D. B. Rawat, S. Jeschke, & C. Brecher (Eds.), Intelligent data-centric systems: Sensor collected intelligence (pp. 419–430). Amsterdam: Elsevier BV.Google Scholar
  37. Wang, X., Ong, S. K., & Nee, A. Y. C. (2016). A comprehensive survey of augmented reality assembly research. Advances in Manufacturing, 4(1), 1–22.CrossRefGoogle Scholar
  38. Watkins, K. E., & Marsick, V. J. (1993). Sculpting the learning organization: Lessons in the art and science of systemic change (1st ed.). San Francisco: Jossey-Bass.Google Scholar
  39. Webel, S., Bockholt, U., Engelke, T., Gavish, N., Olbrich, M., & Preusche, C. (2013). An augmented reality training platform for assembly and maintenance skills. Robotics and Autonomous Systems, 61(4), 398–403.CrossRefGoogle Scholar
  40. Westerfield, G., Mitrovic, A., & Billinghurst, M. (2015). Intelligent augmented reality training for motherboard assembly. International Journal of Artificial Intelligence in Education, 25(1), 157–172.CrossRefGoogle Scholar
  41. Wolter, M. I., Mönnig, A., Hummel, M., Schneemann, C., Weber, E., Zika, G., ..., Neuber-Pohl, C. (2015). Industrie 4.0 und die Folgen für Arbeitsmarkt und Wirtschaft: Szenario-Rechnungen im Rahmen der BIBB-IAB-Qualifikations-und Berufsfeldprojektionen [Industry 4.0 and the consequences on labor market and economy] (No. 201508). Institut für Arbeitsmarkt-und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany]. Retrieved from
  42. Wolter, M. I., Mönnig, A., Hummel, M., Weber, E., Zika, G., Helmrich, R., ..., Neuber-Pohl, C. (2016). Wirtschaft 4.0 und die Folgen für Arbeitsmarkt und Ökonomie: Szenario-Rechnungen im Rahmen der BIBB-IAB-Qualifikations-und Berufsfeldprojektionen [Economy 4.0 and the consequences on labor market and economy: scenario calculations within the scope of BIBB-IAB-Qualifikation- and vocational projections] (No. 201613). Institut für Arbeitsmarkt-und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Educational ScienceUniversity of PaderbornPaderbornGermany

Personalised recommendations