Advertisement

ROS Signaling in the Pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS)

  • Manuela Kellner
  • Satish Noonepalle
  • Qing Lu
  • Anup Srivastava
  • Evgeny Zemskov
  • Stephen M. BlackEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 967)

Abstract

The generation of reactive oxygen species (ROS) plays an important role for the maintenance of cellular processes and functions in the body. However, the excessive generation of oxygen radicals under pathological conditions such as acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) leads to increased endothelial permeability. Within this hallmark of ALI and ARDS, vascular microvessels lose their junctional integrity and show increased myosin contractions that promote the migration of polymorphonuclear leukocytes (PMNs) and the transition of solutes and fluids in the alveolar lumen. These processes all have a redox component, and this chapter focuses on the role played by ROS during the development of ALI/ARDS. We discuss the origins of ROS within the cell, cellular defense mechanisms against oxidative damage, the role of ROS in the development of endothelial permeability, and potential therapies targeted at oxidative stress.

Keywords

Lung injury Pulmonary endothelial cell Reactive oxygen species Xanthine oxidase Nitric oxide synthase Mitochondrial respiratory chain Cytochrome P450 NADPH oxidase Superoxide dismutase Catalase Glutathione Polymorphonuclear leukocytes 

References

  1. 1.
    Ashbaugh, D. G., Bigelow, D. B., Petty, T. L., & Levine, B. E. (1967). Acute respiratory distress in adults. Lancet (London, England), 2(7511), 319–323.CrossRefGoogle Scholar
  2. 2.
    Ranieri, V. M., Rubenfeld, G. D., Thompson, B. T., Ferguson, N. D., Caldwell, E., Fan, E., et al. (2012). Acute respiratory distress syndrome: The berlin definition. Journal of the American Medical Association, 307(23), 2526–2533.PubMedGoogle Scholar
  3. 3.
    Matthay, M. A., & Wiener-Kronish, J. P. (1990). Intact epithelial barrier function is critical for the resolution of alveolar edema in humans. The American Review of Respiratory Disease, 142(6 Pt 1), 1250–1257.PubMedCrossRefGoogle Scholar
  4. 4.
    Gropper, M. A., & Wiener-Kronish, J. (2008). The epithelium in acute lung injury/acute respiratory distress syndrome. Current Opinion in Critical Care, 14(1), 11–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Ware, L. B., & Matthay, M. A. (2001). Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine, 163(6), 1376–1383.PubMedCrossRefGoogle Scholar
  6. 6.
    Mikkelsen, M. E., Shah, C. V., Meyer, N. J., Gaieski, D. F., Lyon, S., Miltiades, A. N., et al. (2013). The epidemiology of acute respiratory distress syndrome in patients presenting to the emergency department with severe sepsis. Shock, 40(5), 375–381.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Kushimoto, S., Endo, T., Yamanouchi, S., Sakamoto, T., Ishikura, H., Kitazawa, Y., et al. (2013). Relationship between extravascular lung water and severity categories of acute respiratory distress syndrome by the berlin definition. Critical Care (London, England), 17(4), R132.CrossRefGoogle Scholar
  8. 8.
    Rodrigues, R. S., Bozza, F. A., Hanrahan, C. J., Wang, L. M., Wu, Q., Hoffman, J. M., et al. (2017). 18F-fluoro-2-deoxyglucose PET informs neutrophil accumulation and activation in lipopolysaccharide-induced acute lung injury. Nuclear Medicine and Biology, 48, 52–62.PubMedCrossRefGoogle Scholar
  9. 9.
    Bellani, G., Rouby, J. J., Constantin, J. M., & Pesenti, A. (2017). Looking closer at acute respiratory distress syndrome: The role of advanced imaging techniques. Current Opinion in Critical Care, 23(1), 30–37.PubMedCrossRefGoogle Scholar
  10. 10.
    Elicker, B. M., Jones, K. T., Naeger, D. M., & Frank, J. A. (2016). Imaging of acute lung injury. Radiologic Clinics of North America, 54(6), 1119–1132.PubMedCrossRefGoogle Scholar
  11. 11.
    Ma, H., Huang, D., Guo, L., Chen, Q., Zhong, W., Geng, Q., et al. (2016). Strong correlation between lung ultrasound and chest computerized tomography imaging for the detection of acute lung injury/acute respiratory distress syndrome in rats. Journal of Thoracic Disease, 8(7), 1443–1448.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Pesenti, A., Musch, G., Lichtenstein, D., Mojoli, F., Amato, M. B., Cinnella, G., et al. (2016). Imaging in acute respiratory distress syndrome. Intensive Care Medicine, 42(5), 686–698.PubMedCrossRefGoogle Scholar
  13. 13.
    Kanazawa, M. (1996). Acute lung injury: Clinical concept and experimental approaches to pathogenesis. The Keio Journal of Medicine, 45(3), 131–139.PubMedCrossRefGoogle Scholar
  14. 14.
    Fujishima, S. (2014). Pathophysiology and biomarkers of acute respiratory distress syndrome. Journal of Intensive Care, 2(1), 32.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Chen, W., & Ware, L. B. (2015). Prognostic factors in the acute respiratory distress syndrome. Clinical and Translational Medicine., 4(1), 65.PubMedCrossRefGoogle Scholar
  16. 16.
    Ware, L. B., Koyama, T., Zhao, Z., Janz, D. R., Wickersham, N., Bernard, G. R., et al. (2013). Biomarkers of lung epithelial injury and inflammation distinguish severe sepsis patients with acute respiratory distress syndrome. Critical Care (London, England), 17(5), R253.CrossRefGoogle Scholar
  17. 17.
    Jensen, J. S., Itenov, T. S., Thormar, K. M., Hein, L., Mohr, T. T., Andersen, M. H., et al. (2016). Prediction of non-recovery from ventilator-demanding acute respiratory failure, ARDS and death using lung damage biomarkers: Data from a 1200-patient critical care randomized trial. Annals of Intensive Care, 6(1), 114.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Wang, T., Gross, C., Desai, A., Zemskov, E., Wu, X., Garcia, A. N., et al. (2016). Endothelial cell Signaling and ventilator-induced lung injury (VILI): Molecular mechanisms, genomic analyses & therapeutic targets. American Journal of Physiology. Lung Cellular and Molecular Physiology, 312(4), L452–L476.PubMedCrossRefGoogle Scholar
  19. 19.
    Curley, G. F., Laffey, J. G., Zhang, H., & Slutsky, A. S. (2016). Biotrauma and ventilator-induced lung injury: Clinical implications. Chest, 150(5), 1109–1117.PubMedCrossRefGoogle Scholar
  20. 20.
    Carrasco Loza, R., Villamizar Rodriguez, G., & Medel, F. N. (2015). Ventilator-induced lung injury (VILI) in acute respiratory distress syndrome (ARDS): Volutrauma and molecular effects. The Open Respiratory Medicine Journal, 9, 112–119.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Moloney, E. D., & Griffiths, M. J. (2004). Protective ventilation of patients with acute respiratory distress syndrome. British Journal of Anaesthesia, 92(2), 261–270.PubMedCrossRefGoogle Scholar
  22. 22.
    Amado-Rodriguez, L., Del Busto, C., Garcia-Prieto, E., & Albaiceta, G. M. (2017). Mechanical ventilation in acute respiratory distress syndrome: The open lung revisited. Medicina Intensiva, pii, 30028.Google Scholar
  23. 23.
    Nieman, G. F., Satalin, J., Andrews, P., Aiash, H., Habashi, N. M., & Gatto, L. A. (2017). Personalizing mechanical ventilation according to physiologic parameters to stabilize alveoli and minimize ventilator induced lung injury (VILI). Intensive Care Medicine Experimental, 5(1), 8.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Lee, K. Y. (2017). Pneumonia, acute respiratory distress syndrome, and early immune-modulator therapy. International Journal of Molecular Sciences, 18(2), 388.PubMedCentralCrossRefGoogle Scholar
  25. 25.
    Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141(2), 312–322.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Babcock, G. T., & Wikstrom, M. (1992). Oxygen activation and the conservation of energy in cell respiration. Nature, 356(6367), 301–309.PubMedCrossRefGoogle Scholar
  27. 27.
    Fabian, M., Wong, W. W., Gennis, R. B., & Palmer, G. (1999). Mass spectrometric determination of dioxygen bond splitting in the "peroxy" intermediate of cytochrome c oxidase. Proceeding of the National Academy Sciences of United State America, 96(23), 13114–13117.CrossRefGoogle Scholar
  28. 28.
    Fridovich, I. (1995). Superoxide Radical and Superoxide Dismutases. Annual Review of Biochemistry, 64, 97–112.PubMedCrossRefGoogle Scholar
  29. 29.
    Liochev, S. I., & Fridovich, I. (1999). Superoxide and iron: Partners in crime. IUBMB Life, 48(2), 157–161.PubMedCrossRefGoogle Scholar
  30. 30.
    Beckman, J. S., & Koppenol, W. H. (1996). Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. The American Journal of Physiology, 271(5 Pt 1), C1424–C1437.PubMedGoogle Scholar
  31. 31.
    Martin, W. J., 2nd. (1984). Neutrophils kill pulmonary endothelial cells by a hydrogen-peroxide-dependent pathway. An in vitro model of neutrophil-mediated lung injury. The American Review of Respiratory Disease, 130(2), 209–213.PubMedGoogle Scholar
  32. 32.
    Aggarwal, S., Dimitropoulou, C., Lu, Q., Black, S. M., & Sharma, S. (2012). Glutathione supplementation attenuates lipopolysaccharide-induced mitochondrial dysfunction and apoptosis in a mouse model of acute lung injury. Frontiers in Physiology, 3, 161.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Chen, L., Zhao, L., Zhang, C., & Lan, Z. (2014). Protective effect of p-cymene on lipopolysaccharide-induced acute lung injury in mice. Inflammation, 37(2), 358–364.PubMedCrossRefGoogle Scholar
  34. 34.
    Howard, M. D., Greineder, C. F., Hood, E. D., & Muzykantov, V. R. (2014). Endothelial targeting of liposomes encapsulating SOD/catalase mimetic EUK-134 alleviates acute pulmonary inflammation. Journal of Controlled Release, 177, 34–41.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ye, S., Lowther, S., & Stambas, J. (2015). Inhibition of reactive oxygen species production ameliorates inflammation induced by influenza a viruses via upregulation of SOCS1 and SOCS3. Journal of Virology, 89(5), 2672–2683.PubMedCrossRefGoogle Scholar
  36. 36.
    Husari, A., Khayat, A., Bitar, H., Hashem, Y., Rizkallah, A., Zaatari, G., et al. (2014). Antioxidant activity of pomegranate juice reduces acute lung injury secondary to hyperoxia in an animal model. BMC Research Notes, 7, 664.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Shohrati, M., Karimzadeh, I., Saburi, A., Khalili, H., & Ghanei, M. (2014). The role of N-acetylcysteine in the management of acute and chronic pulmonary complications of sulfur mustard: A literature review. Inhalation Toxicology, 26(9), 507–523.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhao, W., Zhou, S., Yao, W., Gan, X., Su, G., Yuan, D., et al. (2014). Propofol prevents lung injury after intestinal ischemia-reperfusion by inhibiting the interaction between mast cell activation and oxidative stress. Life Sciences, 108(2), 80–87.PubMedCrossRefGoogle Scholar
  39. 39.
    Lingaraju, M. C., Pathak, N. N., Begum, J., Balaganur, V., Bhat, R. A., Ram, M., et al. (2015). Betulinic acid negates oxidative lung injury in surgical sepsis model. The Journal of Surgical Research, 193(2), 856–867.PubMedCrossRefGoogle Scholar
  40. 40.
    Hu, Z., Gu, Z., Sun, M., Zhang, K., Gao, P., Yang, Q., et al. (2015). Ursolic acid improves survival and attenuates lung injury in septic rats induced by cecal ligation and puncture. The Journal of Surgical Research, 194(2), 528–536.PubMedCrossRefGoogle Scholar
  41. 41.
    Yilmaz, M. Z., Guzel, A., Torun, A. C., Okuyucu, A., Salis, O., Karli, R., et al. (2014). The therapeutic effects of anti-oxidant and anti-inflammatory drug quercetin on aspiration-induced lung injury in rats. Journal of Molecular Histology, 45(2), 195–203.PubMedCrossRefGoogle Scholar
  42. 42.
    Yamamoto, Y., Sousse, L. E., Enkhbaatar, P., Kraft, E. R., Deyo, D. J., Wright, C. L., et al. (2012). Gamma-tocopherol nebulization decreases oxidative stress, arginase activity, and collagen deposition after burn and smoke inhalation in the ovine model. Shock, 38(6), 671–676.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Campos, R., Shimizu, M. H., Volpini, R. A., de Braganca, A. C., Andrade, L., Lopes, F. D., et al. (2012). N-acetylcysteine prevents pulmonary edema and acute kidney injury in rats with sepsis submitted to mechanical ventilation. American Journal of Physiology. Lung Cellular and Molecular Physiology, 302(7), L640–L650.PubMedCrossRefGoogle Scholar
  44. 44.
    Davidovich, N., DiPaolo, B. C., Lawrence, G. G., Chhour, P., Yehya, N., & Margulies, S. S. (2013). Cyclic stretch-induced oxidative stress increases pulmonary alveolar epithelial permeability. American Journal of Respiratory Cell and Molecular Biology, 49(1), 156–164.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Reddy, S. P., Hassoun, P. M., & Brower, R. (2007). Redox imbalance and ventilator-induced lung injury. Antioxidants & Redox Signaling, 9(11), 2003–2012.CrossRefGoogle Scholar
  46. 46.
    Stirpe, F., & Della, C. E. (1969). The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). The Journal of Biological Chemistry, 244(14), 3855–3863.PubMedGoogle Scholar
  47. 47.
    Waud, W. R., & Rajagopalan, K. V. (1976). Purification and properties of the NAD+−dependent (type D) and O2-dependent (type O) forms of rat liver xanthine dehydrogenase. Archives of Biochemistry and Biophysics, 172(2), 354–364.PubMedCrossRefGoogle Scholar
  48. 48.
    Hille, R., & Nishino, T. (1995). Flavoprotein structure and mechanism. 4. Xanthine oxidase and xanthine dehydrogenase. The FASEB Journal, 9(11), 995–1003.PubMedGoogle Scholar
  49. 49.
    Barnard, M. L., & Matalon, S. (1992). Mechanisms of extracellular reactive oxygen species injury to the pulmonary microvasculature. Journal of Applied Physiology, 72(5), 1724–1729.PubMedGoogle Scholar
  50. 50.
    Kennedy, T. P., Rao, N. V., Hopkins, C., Pennington, L., Tolley, E., & Hoidal, J. R. (1989). Role of reactive oxygen species in reperfusion injury of the rabbit lung. Journal of Clinical Investigation, 83(4), 1326–1335.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Abdulnour, R. E. E., Peng, X. Q., Finigan, J. H., Han, E. J., Hasan, E. J., Birukov, K. G., et al. (2006). Mechanical stress activates xanthine oxidoreductase through MAP kinase-dependent pathways. American Journal of Physiology Lung C, 291(3), L345–LL53.CrossRefGoogle Scholar
  52. 52.
    Shasby, D. M., Lind, S. E., Shasby, S. S., Goldsmith, J. C., & Hunninghake, G. W. (1985). Reversible oxidant-induced increases in albumin transfer across cultured endothelium - alterations in cell-shape and calcium homeostasis. Blood, 65(3), 605–614.PubMedGoogle Scholar
  53. 53.
    Syrkina, O., Jafari, B., Hales, C. A., & Quinn, D. A. (2008). Oxidant stress mediates inflammation and apoptosis in ventilator-induced lung injury. Respirology, 13(3), 333–340.PubMedCrossRefGoogle Scholar
  54. 54.
    Dolinay, T., Wu, W., Kaminski, N., Ifedigbo, E., Kaynar, A. M., Szilasi, M., et al. (2008). Mitogen-activated protein kinases regulate susceptibility to ventilator-induced lung injury. PloS One, 3(2), e1601.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Le, A., Damico, R., Damarla, M., Boueiz, A., Pae, H. H., Skirball, J., et al. (2008). Alveolar cell apoptosis is dependent on p38 MAP kinase-mediated activation of xanthine oxidoreductase in ventilator-induced lung injury. Journal of Applied Physiology, 105(4), 1282–1290.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., & Freeman, B. A. (1990). Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences of the United States of America, 87(4), 1620–1624.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Forstermann, U., Closs, E. I., Pollock, J. S., Nakane, M., Schwarz, P., Gath, I., et al. (1994). Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension, 23(6 Pt 2), 1121–1131.PubMedCrossRefGoogle Scholar
  58. 58.
    Ludwig, M. L., & Marletta, M. A. (1999). A new decoration for nitric oxide synthase - a Zn(Cys)4 site. Structure, 7(4), R73–R79.PubMedCrossRefGoogle Scholar
  59. 59.
    Campbell, M. G., Smith, B. C., Potter, C. S., Carragher, B., & Marletta, M. A. (2014). Molecular architecture of mammalian nitric oxide synthases. Proceedings of the National Academy of Sciences of the United States of America, 111(35), E3614–E3623.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Abu-Soud, H. M., & Stuehr, D. J. (1993). Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proceedings of the National Academy of Sciences of the United States of America, 90(22), 10769–10772.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Stuehr, D., Pou, S., & Rosen, G. M. (2001). Oxygen reduction by nitric-oxide synthases. The Journal of Biological Chemistry, 276(18), 14533–14536.PubMedCrossRefGoogle Scholar
  62. 62.
    Xia, Y., Tsai, A. L., Berka, V., & Zweier, J. L. (1998). Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. The Journal of Biological Chemistry, 273(40), 25804–25808.PubMedCrossRefGoogle Scholar
  63. 63.
    Vasquez-Vivar, J., Kalyanaraman, B., Martasek, P., Hogg, N., Masters, B. S., Karoui, H., et al. (1998). Superoxide generation by endothelial nitric oxide synthase: The influence of cofactors. Proceedings of the National Academy of Sciences of the United States of America, 95(16), 9220–9225.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Bailey, J., Shaw, A., Fischer, R., Ryan, B. J., Kessler, B. M., McCullagh, J., et al. (2017). A novel role for endothelial tetrahydrobiopterin in mitochondrial redox balance. Free Radical Biology & Medicine, 104, 214–225.CrossRefGoogle Scholar
  65. 65.
    Aggarwal, S., Gross, C. M., Kumar, S., Dimitropoulou, C., Sharma, S., Gorshkov, B. A., et al. (2014). Dimethylarginine dimethylaminohydrolase II overexpression attenuates LPS-mediated lung leak in acute lung injury. American Journal of Respiratory Cell and Molecular Biology, 50(3), 614–625.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Sharma, S., Smith, A., Kumar, S., Aggarwal, S., Rehmani, I., Snead, C., et al. (2010). Mechanisms of nitric oxide synthase uncoupling in endotoxin-induced acute lung injury: Role of asymmetric dimethylarginine. Vascular Pharmacology, 52(5–6), 182–190.PubMedCrossRefGoogle Scholar
  67. 67.
    Gunaydin, H., & Houk, K. N. (2009). Mechanisms of peroxynitrite-mediated nitration of tyrosine. Chemical Research in Toxicology, 22(5), 894–898.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Zou, M. H., Shi, C., & Cohen, R. A. (2002). Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. The Journal of Clinical Investigation, 109(6), 817–826.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ghosh, S., Gupta, M., Xu, W., Mavrakis, D. A., Janocha, A. J., Comhair, S. A., et al. (2016). Phosphorylation inactivation of endothelial nitric oxide synthesis in pulmonary arterial hypertension. American Journal of Physiology Lung Cellular and Molecular Physiology, 310(11), L1199–L1205.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Chen, F., Kumar, S., Yu, Y., Aggarwal, S., Gross, C., Wang, Y., et al. (2014). PKC-dependent phosphorylation of eNOS at T495 regulates eNOS coupling and endothelial barrier function in response to G+ −toxins. PloS One, 9(7), e99823.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sun, X., Kumar, S., Sharma, S., Aggarwal, S., Lu, Q., Gross, C., et al. (2014). Endothelin-1 induces a glycolytic switch in pulmonary arterial endothelial cells via the mitochondrial translocation of endothelial nitric oxide synthase. American Journal of Respiratory Cell and Molecular Biology, 50(6), 1084–1095.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Zhan, X., & Desiderio, D. M. (2006). Nitroproteins from a human pituitary adenoma tissue discovered with a nitrotyrosine affinity column and tandem mass spectrometry. Analytical Biochemistry, 354(2), 279–289.PubMedCrossRefGoogle Scholar
  73. 73.
    Rafikov, R., Dimitropoulou, C., Aggarwal, S., Kangath, A., Gross, C., Pardo, D., et al. (2014). Lipopolysaccharide-induced lung injury involves the nitration-mediated activation of RhoA. The Journal of Biological Chemistry, 289(8), 4710–4722.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Gross, C. M., Rafikov, R., Kumar, S., Aggarwal, S., Ham, P. B., 3rd, Meadows, M. L., et al. (2015). Endothelial nitric oxide synthase deficient mice are protected from lipopolysaccharide induced acute lung injury. PloS One, 10(3), e0119918.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Murakami, K., Enkhbaatar, P., Yu, Y. M., Traber, L. D., Cox, R. A., Hawkins, H. K., et al. (2007). L-arginine attenuates acute lung injury after smoke inhalation and burn injury in sheep. Shock, 28(4), 477–483.PubMedCrossRefGoogle Scholar
  76. 76.
    Vaporidi, K., Francis, R. C., Bloch, K. D., & Zapol, W. M. (2010). Nitric oxide synthase 3 contributes to ventilator-induced lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology, 299(2), L150–L159.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Mitchell, P. (1977). Vectorial chemiosmotic processes. Annual Review of Biochemistry, 46, 996–1005.PubMedCrossRefGoogle Scholar
  78. 78.
    O'Malley, Y., Fink, B. D., Ross, N. C., Prisinzano, T. E., & Sivitz, W. I. (2006). Reactive oxygen and targeted antioxidant administration in endothelial cell mitochondria. The Journal of Biological Chemistry, 281(52), 39766–39775.PubMedCrossRefGoogle Scholar
  79. 79.
    Johnson, J. E., Jr., Choksi, K., & Widger, W. R. (2003). NADH-ubiquinone oxidoreductase: Substrate-dependent oxygen turnover to superoxide anion as a function of flavin mononucleotide. Mitochondrion, 3(2), 97–110.PubMedCrossRefGoogle Scholar
  80. 80.
    Kudin, A. P., Bimpong-Buta, N. Y., Vielhaber, S., Elger, C. E., & Kunz, W. S. (2004). Characterization of superoxide-producing sites in isolated brain mitochondria. The Journal of Biological Chemistry, 279(6), 4127–4135.PubMedCrossRefGoogle Scholar
  81. 81.
    Kussmaul, L., & Hirst, J. (2006). The mechanism of superoxide production by NADH:Ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 103(20), 7607–7612.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Drose, S., & Brandt, U. (2008). The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. The Journal of Biological Chemistry, 283(31), 21649–21654.PubMedCrossRefGoogle Scholar
  83. 83.
    Boveris, A., Cadenas, E., & Stoppani, A. O. (1976). Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. The Biochemical Journal, 156(2), 435–444.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Muller, F. L., Liu, Y. H., & Van Remmen, H. (2004). Complex III releases superoxide to both sides of the inner mitochondrial membrane. Journal of Biological Chemistry, 279(47), 49064–49073.PubMedCrossRefGoogle Scholar
  85. 85.
    Turrens, J. F., Alexandre, A., & Lehninger, A. L. (1985). Ubisemiquinone is the electron-donor for superoxide formation by complex iii of heart-mitochondria. Archives of Biochemistry and Biophysics, 237(2), 408–414.PubMedCrossRefGoogle Scholar
  86. 86.
    DiMauro, S., & Schon, E. A. (2003). Mitochondrial respiratory-chain diseases. The New England Journal of Medicine, 348(26), 2656–2668.PubMedCrossRefGoogle Scholar
  87. 87.
    Mansfield, K. D., Guzy, R. D., Pan, Y., Young, R. M., Cash, T. P., Schumacker, P. T., et al. (2005). Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metabolism, 1(6), 393–399.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Schroder, K., & Tschopp, J. (2010). The inflammasomes. Cell, 140(6), 821–832.PubMedCrossRefGoogle Scholar
  89. 89.
    Slee, E. A., Harte, M. T., Kluck, R. M., Wolf, B. B., Casiano, C. A., Newmeyer, D. D., et al. (1999). Ordering the cytochrome c-initiated caspase cascade: Hierarchical activation of caspases-2, −3, −6, −7, −8, and −10 in a caspase-9-dependent manner. The Journal of Cell Biology, 144(2), 281–292.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ricci, C., Pastukh, V., Leonard, J., Turrens, J., Wilson, G., Schaffer, D., et al. (2008). Mitochondrial DNA damage triggers mitochondrial-superoxide generation and apoptosis. American Journal of Physiology. Cell Physiology, 294(2), C413–C422.PubMedCrossRefGoogle Scholar
  91. 91.
    Singer, M. (2014). The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence, 5(1), 66–72.PubMedCrossRefGoogle Scholar
  92. 92.
    Gu, X. L., Wu, G. N., Yao, Y. W., Zeng, J. L., Shi, D. H., Lv, T. F., et al. (2015). Intratracheal administration of mitochondrial DNA directly provokes lung inflammation through the TLR9-p38 MAPK pathway. Free Radical Biology of Medicine, 83, 149–158.CrossRefGoogle Scholar
  93. 93.
    Zhou, R., Yazdi, A. S., Menu, P., & Tschopp, J. (2011). A role for mitochondria in NLRP3 inflammasome activation. Nature, 469(7329), 221–225.PubMedCrossRefGoogle Scholar
  94. 94.
    Santos, J. H., Hunakova, L., Chen, Y. M., Bortner, C., & Van Houten, B. (2003). Cell sorting experiments link persistent mitochondrial DNA damage with loss of mitochondrial membrane potential and apoptotic cell death. The Journal of Biological Chemistry, 278(3), 1728–1734.PubMedCrossRefGoogle Scholar
  95. 95.
    Green, D. R., & Llambi, F. (2015). Cell death Signaling. Csh Perspect Biology, 7(12), pii.Google Scholar
  96. 96.
    Suliman, H. B., & Piantadosi, C. A. (2014). Mitochondrial biogenesis: Regulation by endogenous gases during inflammation and organ stress. Current Pharm Design, 20(35), 5653–5662.CrossRefGoogle Scholar
  97. 97.
    Nakahira, K., Haspel, J. A., Rathinam, V. A. K., Lee, S. J., Dolinay, T., Lam, H. C., et al. (2011). Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunology, 12(3), 222–U57.PubMedCrossRefGoogle Scholar
  98. 98.
    Chapman, K. E., Sinclair, S. E., Zhuang, D., Hassid, A., Desai, L. P., & Waters, C. M. (2005). Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 289(5), L834–L841.PubMedCrossRefGoogle Scholar
  99. 99.
    Sun, S. Q., Sursal, T., Adibnia, Y., Zhao, C., Zheng, Y., Li, H. P., et al. (2013). Mitochondrial DAMPs increase endothelial permeability through neutrophil dependent and independent pathways. PloS One, 8(3), e59989.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Finkel, T., Menazza, S., Holmstrom, K. M., Parks, R. J., Liu, J. L., Sun, J. H., et al. (2015). The ins and outs of mitochondrial calcium. Circulation Research, 116(11), 1810–1819.PubMedCrossRefGoogle Scholar
  101. 101.
    Otsubo, C., Bharathi, S., Uppala, R., Ilkayeva, O. R., Wang, D., McHugh, K., et al. (2015). Long-chain Acylcarnitines reduce lung function by inhibiting pulmonary surfactant. The Journal of Biological Chemistry, 290(39), 23897–23904.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Guengerich, F. P. (1991). Reactions and significance of cytochrome P-450 enzymes. The Journal of Biological Chemistry, 266(16), 10019–10022.PubMedGoogle Scholar
  103. 103.
    Hamdane, D., Zhang, H., & Hollenberg, P. (2008). Oxygen activation by cytochrome P450 monooxygenase. Photosynthesis Research, 98(1–3), 657–666.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Fleming, I., Michaelis, U. R., Bredenkotter, D., Fisslthaler, B., Dehghani, F., Brandes, R. P., et al. (2001). Endothelium-derived hyperpolarizing factor synthase (cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circulation Research, 88(1), 44–51.PubMedCrossRefGoogle Scholar
  105. 105.
    Popp, R., Fleming, I., & Busse, R. (1998). Pulsatile stretch in coronary arteries elicits release of endothelium-derived hyperpolarizing factor: A modulator of arterial compliance. Circulation Research, 82(6), 696–703.PubMedCrossRefGoogle Scholar
  106. 106.
    Gray, J. P., Mishin, V., Heck, D. E., Laskin, D. L., & Laskin, J. D. (2010). Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species. Toxicology Applied Pharmacology, 247(2), 76–82.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Baulig, A., Garlatti, M., Bonvallot, V., Marchand, A., Barouki, R., Marano, F., et al. (2003). Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 285(3), L671–L679.PubMedCrossRefGoogle Scholar
  108. 108.
    Jiang, W. W., Couroucli, X. I., Wang, L. H., Barrios, R., & Moorthy, B. (2011). Augmented oxygen-mediated transcriptional activation of cytochrome P450 (CYP)1A expression and increased susceptibilities to hyperoxic lung injury in transgenic mice carrying the human CYP1A1 or mouse 1A2 promoter in vivo. Biochemical and Biophysical Research Communications, 407(1), 79–85.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Wang, L. H., Lingappan, K., Jiang, W. W., Couroucli, X. I., Welty, S. E., Shivanna, B., et al. (2015). Disruption of cytochrome P4501A2 in mice leads to increased susceptibility to hyperoxic lung injury. Free Radical Biology of Medicine, 82, 147–159.CrossRefGoogle Scholar
  110. 110.
    Kaphalia, L., & Calhoun, W. J. (2013). Alcoholic lung injury: Metabolic, biochemical and immunological aspects. Toxicology Letters, 222(2), 171–179.PubMedCrossRefGoogle Scholar
  111. 111.
    Clark, R. A. (1990). The human neutrophil respiratory burst oxidase. The Journal of Infectious Diseases, 161(6), 1140–1147.PubMedCrossRefGoogle Scholar
  112. 112.
    Han, C. H., Freeman, J. L., Lee, T., Motalebi, S. A., & Lambeth, J. D. (1998). Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67(phox). The Journal of Biological Chemistry, 273(27), 16663–16668.PubMedCrossRefGoogle Scholar
  113. 113.
    Ago, T., Nunoi, H., Ito, T., & Sumimoto, H. (1999). Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47(phox). Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47(phox), thereby activating the oxidase. The Journal of Biological Chemistry, 274(47), 33644–33653.PubMedCrossRefGoogle Scholar
  114. 114.
    Bokoch, G. M., & Zhao, T. (2006). Regulation of the phagocyte NADPH oxidase by Rac GTPase. Antioxidants & Redox Signaling, 8(9–10), 1533–1548.CrossRefGoogle Scholar
  115. 115.
    Babior, B. M. (2004). NADPH oxidase. Current Opinion in Immunology, 16(1), 42–47.PubMedCrossRefGoogle Scholar
  116. 116.
    Geiszt, M. (2006). NADPH oxidases: New kids on the block. Cardiovascular Research, 71(2), 289–299.PubMedCrossRefGoogle Scholar
  117. 117.
    Pendyala, S., Usatyuk, P. V., Gorshkova, I. A., Garcia, J. G., & Natarajan, V. (2009). Regulation of NADPH oxidase in vascular endothelium: The role of phospholipases, protein kinases, and cytoskeletal proteins. Antioxidants & Redox Signaling, 11(4), 841–860.CrossRefGoogle Scholar
  118. 118.
    Manea, A., Tanase, L. I., Raicu, M., & Simionescu, M. (2010). Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-kappaB in human aortic smooth muscle cells. Biochemical and Biophysical Research Communications, 396(4), 901–907.PubMedCrossRefGoogle Scholar
  119. 119.
    Wei, H. Y., Mi, X. H., Ji, L., Yang, L. C., Xia, Q. J., Wei, Y. Q., et al. (2010). Protein kinase C-delta is involved in induction of NOX1 gene expression by aldosterone in rat vascular smooth muscle cells. Biochemistry-Moscow, 75(3), 304–309.PubMedCrossRefGoogle Scholar
  120. 120.
    Chang, K. H., Park, J. M., Lee, C. H., Kim, B., Choi, K. C., Choi, S. J., et al. (2017). NADPH oxidase (NOX) 1 mediates cigarette smoke-induced superoxide generation in rat vascular smooth muscle cells. Toxicology In Vitro, 38, 49–58.PubMedCrossRefGoogle Scholar
  121. 121.
    Clark, R. A., Malech, H. L., Gallin, J. I., Nunoi, H., Volpp, B. D., Pearson, D. W., et al. (1989). Genetic variants of chronic granulomatous disease: Prevalence of deficiencies of two cytosolic components of the NADPH oxidase system. The New England Journal of Medicine, 321(10), 647–652.PubMedCrossRefGoogle Scholar
  122. 122.
    Curnutte, J. T., Whitten, D. M., & Babior, B. M. (1974). Defective superoxide production by granulocytes from patients with chronic granulomatous disease. The New England Journal of Medicine, 290(11), 593–597.PubMedCrossRefGoogle Scholar
  123. 123.
    Kassan, M., Choi, S. K., Galan, M., Lee, Y. H., Trebak, M., & Matrougui, K. (2014). Enhanced p22phox expression impairs vascular function through p38 and ERK1/2 MAP kinase-dependent mechanisms in type 2 diabetic mice. American Journal of Physiology. Heart and Circulatory Physiology, 306(7), H972–H980.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Petry, A., Djordjevic, T., Weitnauer, M., Kietzmann, T., Hess, J., & Gorlach, A. (2006). NOX2 and NOX4 mediate proliferative response in endothelial cells. Antioxidants & Redox Signaling, 8(9–10), 1473–1484.CrossRefGoogle Scholar
  125. 125.
    Carrizzo, A., Vecchione, C., Damato, A., di Nonno, F., Ambrosio, M., Pompeo, F., et al. (2017). Rac1 pharmacological inhibition rescues human endothelial dysfunction. Journal of the American Heart Association, 6(3), pii.CrossRefGoogle Scholar
  126. 126.
    Lozhkin, A., Vendrov, A. E., Pan, H., Wickline, S. A., Madamanchi, N. R., & Runge, M. S. (2017). NADPH oxidase 4 regulates vascular inflammation in aging and atherosclerosis. Journal of Molecular and Cellular Cardiology, 102, 10–21.PubMedCrossRefGoogle Scholar
  127. 127.
    Zhang, M., Brewer, A. C., Schroder, K., Santos, C. X., Grieve, D. J., Wang, M., et al. (2010). NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 18121–18126.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Bachofen, M., & Weibel, E. R. (1982). Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clinics in Chest Medicine, 3(1), 35–56.PubMedGoogle Scholar
  129. 129.
    Maitra, U., Singh, N., Gan, L., Ringwood, L., & Li, L. (2009). IRAK-1 contributes to lipopolysaccharide-induced reactive oxygen species generation in macrophages by inducing NOX-1 transcription and Rac1 activation and suppressing the expression of antioxidative enzymes. The Journal of Biological Chemistry, 284(51), 35403–35411.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Sato, K., Kadiiska, M. B., Ghio, A. J., Corbett, J., Fann, Y. C., Holland, S. M., et al. (2002). In vivo lipid-derived free radical formation by NADPH oxidase in acute lung injury induced by lipopolysaccharide: A model for ARDS. The FASEB Journal, 16(13), 1713–1720.PubMedCrossRefGoogle Scholar
  131. 131.
    Park, H. S., Jung, H. Y., Park, E. Y., Kim, J., Lee, W. J., & Bae, Y. S. (2004). Cutting edge: Direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. Journal of Immunology, 173(6), 3589–3593.CrossRefGoogle Scholar
  132. 132.
    Matsubara, T., & Ziff, M. (1986). Increased superoxide anion release from human endothelial cells in response to cytokines. Journal of Immunology, 137(10), 3295–3298.Google Scholar
  133. 133.
    Murphy, H. S., Shayman, J. A., Till, G. O., Mahrougui, M., Owens, C. B., Ryan, U. S., et al. (1992). Superoxide responses of endothelial cells to C5a and TNF-alpha: Divergent signal transduction pathways. The American Journal of Physiology, 263(1 Pt 1), L51–L59.PubMedGoogle Scholar
  134. 134.
    Li, Y., Xiang, M., Yuan, Y., Xiao, G., Zhang, J., Jiang, Y., et al. (2009). Hemorrhagic shock augments lung endothelial cell activation: Role of temporal alterations of TLR4 and TLR2. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 297(6), R1670–R1680.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Carnesecchi, S., Deffert, C., Pagano, A., Garrido-Urbani, S., Metrailler-Ruchonnet, I., Schappi, M., et al. (2009). NADPH oxidase-1 plays a crucial role in hyperoxia-induced acute lung injury in mice. American Journal of Respiratory and Critical Care Medicine, 180(10), 972–981.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Carnesecchi, S., Deffert, C., Pagano, A., Garrido-Urbani, S., Metrailler-Ruchonnet, I., Schappi, M., et al. (2009). NADPH oxidase-1 plays a crucial role in Hyperoxia-induced acute lung injury in mice. American Journal of Respiratory and Critical Care, 180(10), 972–981.CrossRefGoogle Scholar
  137. 137.
    Carnesecchi, S., Deffert, C., Donati, Y., Basset, O., Hinz, B., Preynat-Seauve, O., et al. (2011). A key role for NOX4 in epithelial cell death during development of lung fibrosis. Antioxidants & Redox Signaling, 15(3), 607–619.CrossRefGoogle Scholar
  138. 138.
    Davidson, B. A., Vethanayagam, R. R., Grimm, M. J., Mullan, B. A., Raghavendran, K., Blackwell, T. S., et al. (2013). NADPH oxidase and Nrf2 regulate gastric aspiration-induced inflammation and acute lung injury. Journal of Immunology, 190(4), 1714–1724.CrossRefGoogle Scholar
  139. 139.
    Segal, B. H., Han, W., Bushey, J. J., Joo, M., Bhatti, Z., Feminella, J., et al. (2010). NADPH oxidase limits innate immune responses in the lungs in mice. PloS One, 5(3), e9631.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Fukai, T., & Ushio-Fukai, M. (2011). Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxidants & Redox Signaling, 15(6), 1583–1606.CrossRefGoogle Scholar
  141. 141.
    Ndengele, M. M., Muscoli, C., Wang, Z. Q., Doyle, T. M., Matuschak, G. M., & Salvemini, D. (2005). Superoxide potentiates NF-kappaB activation and modulates endotoxin-induced cytokine production in alveolar macrophages. Shock, 23(2), 186–193.PubMedCrossRefGoogle Scholar
  142. 142.
    Cai, L., Yi, F., Dai, Z., Huang, X., Zhao, Y. D., Mirza, M. K., et al. (2014). Loss of caveolin-1 and adiponectin induces severe inflammatory lung injury following LPS challenge through excessive oxidative/nitrative stress. American Journal of Physiology. Lung Cellular and Molecular Physiology, 306(6), L566–L573.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Gonzalez, P. K., Zhuang, J., Doctrow, S. R., Malfroy, B., Benson, P. F., Menconi, M. J., et al. (1995). EUK-8, a synthetic superoxide dismutase and catalase mimetic, ameliorates acute lung injury in endotoxemic swine. The Journal of Pharmacology and Experimental Therapeutics, 275(2), 798–806.PubMedGoogle Scholar
  144. 144.
    Suresh, M. V., Yu, B., Lakshminrusimha, S., Machado-Aranda, D., Talarico, N., Zeng, L., et al. (2013). The protective role of MnTBAP in oxidant-mediated injury and inflammation in a rat model of lung contusion. Surgery, 154(5), 980–990.PubMedCrossRefGoogle Scholar
  145. 145.
    Putnam, C. D., Arvai, A. S., Bourne, Y., & Tainer, J. A. (2000). Active and inhibited human catalase structures: Ligand and NADPH binding and catalytic mechanism. Journal of Molecular Biology, 296(1), 295–309.PubMedCrossRefGoogle Scholar
  146. 146.
    Milligan, S. A., Hoeffel, J. M., Goldstein, I. M., & Flick, M. R. (1988). Effect of catalase on endotoxin-induced acute lung injury in unanesthetized sheep. The American Review of Respiratory Disease, 137(2), 420–428.PubMedCrossRefGoogle Scholar
  147. 147.
    Flick, M. R., Milligan, S. A., Hoeffel, J. M., & Goldstein, I. M. (1988). Catalase prevents increased lung vascular permeability during air emboli in unanesthetized sheep. Journal of Applied Physiology, 64(3), 929–935.PubMedGoogle Scholar
  148. 148.
    Kozower, B. D., Christofidou-Solomidou, M., Sweitzer, T. D., Muro, S., Buerk, D. G., Solomides, C. C., et al. (2003). Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury. Nature Biotechnology, 21(4), 392–398.PubMedCrossRefGoogle Scholar
  149. 149.
    Espinosa-Diez, C., Miguel, V., Mennerich, D., Kietzmann, T., Sanchez-Perez, P., Cadenas, S., et al. (2015). Antioxidant responses and cellular adjustments to oxidative stress. Redox Biology, 6, 183–197.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Day, B. J. (2009). Catalase and glutathione peroxidase mimics. Biochemical Pharmacology, 77(3), 285–296.PubMedCrossRefGoogle Scholar
  151. 151.
    Amir Aslani, B., & Ghobadi, S. (2016). Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life Sciences, 146, 163–173.PubMedCrossRefGoogle Scholar
  152. 152.
    Kim, K. S., Suh, G. J., Kwon, W. Y., Kwak, Y. H., Lee, K., Lee, H. J., et al. (2012). Antioxidant effects of selenium on lung injury in paraquat intoxicated rats. Clinical Toxicology (Philadelphia, Pa.), 50(8), 749–753.CrossRefGoogle Scholar
  153. 153.
    Petronilho, F., Florentino, D., Silvestre, F., Danielski, L. G., Nascimento, D. Z., Vieira, A., et al. (2015). Ebselen attenuates lung injury in experimental model of carrageenan-induced pleurisy in rats. Inflammation, 38(4), 1394–1400.PubMedCrossRefGoogle Scholar
  154. 154.
    Moutet, M., d'Alessio, P., Malette, P., Devaux, V., & Chaudiere, J. (1998). Glutathione peroxidase mimics prevent TNFalpha- and neutrophil-induced endothelial alterations. Free Radical Biology & Medicine, 25(3), 270–281.CrossRefGoogle Scholar
  155. 155.
    Wagner, J. G., Birmingham, N. P., Jackson-Humbles, D., Jiang, Q., Harkema, J. R., & Peden, D. B. (2014). Supplementation with gamma-tocopherol attenuates endotoxin-induced airway neutrophil and mucous cell responses in rats. Free Radical Biology & Medicine, 68, 101–109.CrossRefGoogle Scholar
  156. 156.
    Morita, N., Shimoda, K., Traber, M. G., Westphal, M., Enkhbaatar, P., Murakami, K., et al. (2006). Vitamin E attenuates acute lung injury in sheep with burn and smoke inhalation injury. Redox Report, 11(2), 61–70.PubMedCrossRefGoogle Scholar
  157. 157.
    Gomes-Rochette, N. F., Da Silveira, V. M., Nabavi, S. M., Mota, E. F., Nunes-Pinheiro, D. C., Daglia, M., et al. (2016). Fruit as potent natural antioxidants and their biological effects. Current Pharmaceutical Biotechnology, 17(11), 986–993.PubMedCrossRefGoogle Scholar
  158. 158.
    Ding, X. M., Pan, L., Wang, Y., & Xu, Q. Z. (2016). Baicalin exerts protective effects against lipopolysaccharide-induced acute lung injury by regulating the crosstalk between the CX3CL1-CX3CR1 axis and NF-kappaB pathway in CX3CL1-knockout mice. International Journal of Molecular Medicine, 37(3), 703–715.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Fouad, A. A., Albuali, W. H., & Jresat, I. (2016). Protective effect of Naringenin against lipopolysaccharide-induced acute lung injury in rats. Pharmacology, 97(5–6), 224–232.PubMedCrossRefGoogle Scholar
  160. 160.
    Kong, G., Huang, X., Wang, L., Li, Y., Sun, T., Han, S., et al. (2016). Astilbin alleviates LPS-induced ARDS by suppressing MAPK signaling pathway and protecting pulmonary endothelial glycocalyx. International Immunopharmacology, 36, 51–58.PubMedCrossRefGoogle Scholar
  161. 161.
    Luan, R. L., Meng, X. X., & Jiang, W. (2016). Protective effects of Apigenin against Paraquat-induced acute lung injury in mice. Inflammation, 39(2), 752–758.PubMedCrossRefGoogle Scholar
  162. 162.
    Lv, H., Liu, Q., Wen, Z., Feng, H., Deng, X., & Ci, X. (2017). Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3beta-Nrf2 signal axis. Redox Biology, 12, 311–324.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Shen, H., Wu, N., Liu, Z., Zhao, H., & Zhao, M. (2017). Epigallocatechin-3-gallate alleviates paraquat-induced acute lung injury and inhibits upregulation of toll-like receptors. Life Sciences, 170, 25–32.PubMedCrossRefGoogle Scholar
  164. 164.
    Wang, C., Zeng, L., Zhang, T., Liu, J., & Wang, W. (2016). Casticin inhibits lipopolysaccharide-induced acute lung injury in mice. European Journal of Pharmacology, 789, 172–178.PubMedCrossRefGoogle Scholar
  165. 165.
    Li, T., Zhang, J., Feng, J., Li, Q., Wu, L., Ye, Q., et al. (2013). Resveratrol reduces acute lung injury in a LPSinduced sepsis mouse model via activation of Sirt1. Molecular Medicine Reports, 7(6), 1889–1895.PubMedCrossRefGoogle Scholar
  166. 166.
    Rieder, S. A., Nagarkatti, P., & Nagarkatti, M. (2012). Multiple anti-inflammatory pathways triggered by resveratrol lead to amelioration of staphylococcal enterotoxin B-induced lung injury. British Journal of Pharmacology, 167(6), 1244–1258.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Packer, L., & Cadenas, E. (2011). Lipoic acid: Energy metabolism and redox regulation of transcription and cell signaling. Journal of Clinical Biochemistry and Nutrition, 48(1), 26–32.PubMedCrossRefGoogle Scholar
  168. 168.
    Bulmus, F. G., Gursu, M. F., Muz, M. H., Yaman, I., Bulmus, O., & Sakin, F. (2013). Protective effects of alpha-lipoic acid on oleic acid-induced acute lung injury in rats. Balkan Medical Journal, 30(3), 309–314.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Lin, Y. C., Lai, Y. S., & Chou, T. C. (2013). The protective effect of alpha-lipoic acid in lipopolysaccharide-induced acute lung injury is mediated by heme oxygenase-1. Evidence-based Complementary and Alternative Medicine, 2013, 590363.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Fisher, B. J., Seropian, I. M., Kraskauskas, D., Thakkar, J. N., Voelkel, N. F., Fowler, A. A., 3rd, et al. (2011). Ascorbic acid attenuates lipopolysaccharide-induced acute lung injury. Critical Care Medicine, 39(6), 1454–1460.PubMedCrossRefGoogle Scholar
  171. 171.
    Fukui, H., Iwahashi, H., Endoh, S., Nishio, K., Yoshida, Y., Hagihara, Y., et al. (2015). Ascorbic acid attenuates acute pulmonary oxidative stress and inflammation caused by zinc oxide nanoparticles. Journal of Occupational Health, 57(2), 118–125.PubMedCrossRefGoogle Scholar
  172. 172.
    Dudek, S. M., & Garcia, J. G. (2001). Cytoskeletal regulation of pulmonary vascular permeability. Journal of Applied Physiology, 91(4), 1487–1500.PubMedGoogle Scholar
  173. 173.
    Gehr, P., Bachofen, M., & Weibel, E. R. (1978). The normal human lung: Ultrastructure and morphometric estimation of diffusion capacity. Respiration Physiology, 32(2), 121–140.PubMedCrossRefGoogle Scholar
  174. 174.
    Weibel, E. R. (1983). How does lung structure affect gas exchange? Chest, 83(4), 657–665.PubMedCrossRefGoogle Scholar
  175. 175.
    Mehta, D., & Malik, A. B. (2006). Signaling mechanisms regulating endothelial permeability. Physiological Reviews, 86(1), 279–367.PubMedCrossRefGoogle Scholar
  176. 176.
    Agre, P. (2006). The aquaporin water channels. Proceedings of the American Thoracic Society, 3(1), 5–13.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Sukriti, S., Tauseef, M., Yazbeck, P., & Mehta, D. (2014). Mechanisms regulating endothelial permeability. Pulmonary Circulation, 4(4), 535–551.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Orfanos, S. E., Mavrommati, I., Korovesi, I., & Roussos, C. (2004). Pulmonary endothelium in acute lung injury: From basic science to the critically ill. Intensive Care Medicine, 30(9), 1702–1714.PubMedCrossRefGoogle Scholar
  179. 179.
    Dvorak, A. M., Kohn, S., Morgan, E. S., Fox, P., Nagy, J. A., & Dvorak, H. F. (1996). The vesiculo-vacuolar organelle (VVO): A distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. Journal of Leukocyte Biology, 59(1), 100–115.PubMedGoogle Scholar
  180. 180.
    Predescu, S. A., Predescu, D. N., & Malik, A. B. (2007). Molecular determinants of endothelial transcytosis and their role in endothelial permeability. American Journal of Physiology. Lung Cellular and Molecular Physiology, 293(4), L823–L842.PubMedCrossRefGoogle Scholar
  181. 181.
    Predescu, D., & Palade, G. E. (1993). Plasmalemmal vesicles represent the large pore system of continuous microvascular endothelium. The American Journal of Physiology, 265(2 Pt 2), H725–H733.PubMedGoogle Scholar
  182. 182.
    Frokjaer-Jensen, J. (1991). The endothelial vesicle system in cryofixed frog mesenteric capillaries analysed by ultrathin serial sectioning. Journal of Electron Microscopy Technique, 19(3), 291–304.PubMedCrossRefGoogle Scholar
  183. 183.
    Luanpitpong, S., Talbott, S. J., Rojanasakul, Y., Nimmannit, U., Pongrakhananon, V., Wang, L., et al. (2010). Regulation of lung cancer cell migration and invasion by reactive oxygen species and caveolin-1. The Journal of Biological Chemistry, 285(50), 38832–38840.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Bian, F., Cui, J., Zheng, T., & Jin, S. (2017). Reactive oxygen species mediate angiotensin II-induced transcytosis of low-density lipoprotein across endothelial cells. International Journal of Molecular Medicine, 39(3), 629–635.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Gopalakrishna, D., Pennington, S., Karaa, A., & Clemens, M. G. (2016). ET-1 stimulates superoxide production by eNOS following exposure of vascular endothelial cells to endotoxin. Shock, 46(1), 60–66.PubMedCrossRefGoogle Scholar
  186. 186.
    Sarmiento, D., Montorfano, I., Caceres, M., Echeverria, C., Fernandez, R., Cabello-Verrugio, C., et al. (2014). Endotoxin-induced vascular endothelial cell migration is dependent on TLR4/NF-kappaB pathway, NAD(P)H oxidase activation, and transient receptor potential melastatin 7 calcium channel activity. The International Journal of Biochemistry & Cell Biology, 55, 11–23.CrossRefGoogle Scholar
  187. 187.
    Tiruppathi, C., Shimizu, J., Miyawaki-Shimizu, K., Vogel, S. M., Bair, A. M., Minshall, R. D., et al. (2008). Role of NF-kappaB-dependent caveolin-1 expression in the mechanism of increased endothelial permeability induced by lipopolysaccharide. The Journal of Biological Chemistry, 283(7), 4210–4218.PubMedCrossRefGoogle Scholar
  188. 188.
    You, Q. H., Zhang, D., Sun, G. Y., Yue, Y., & Xu, X. J. (2013). Role of caveolin-1 in pulmonary microvascular endothelial cells injury induced by lipopolysaccharide in rat. Zhonghua wei zhong bing ji jiu yi xue., 25(12), 706–710.PubMedGoogle Scholar
  189. 189.
    Wang, N., Zhang, D., Sun, G., Zhang, H., You, Q., Shao, M., et al. (2015). Lipopolysaccharide-induced caveolin-1 phosphorylation-dependent increase in transcellular permeability precedes the increase in paracellular permeability. Drug Design, Development and Therapy, 9, 4965–4977.PubMedPubMedCentralGoogle Scholar
  190. 190.
    Garrean, S., Gao, X. P., Brovkovych, V., Shimizu, J., Zhao, Y. Y., Vogel, S. M., et al. (2006). Caveolin-1 regulates NF-kappaB activation and lung inflammatory response to sepsis induced by lipopolysaccharide. Journal of Immunology, 177(7), 4853–4860.CrossRefGoogle Scholar
  191. 191.
    Kuebler, W. M., Wittenberg, C., Lee, W. L., Reppien, E., Goldenberg, N. M., Lindner, K., et al. (2016). Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase. American Journal of Physiology. Lung Cellular and Molecular Physiology, 310(8), L720–L732.PubMedGoogle Scholar
  192. 192.
    Qiaoli, S., Yi, S., Jie, Z., & Deyun, C. (2016). KLF2 and caveolin-1 as early indicators of acute lung injury induced by paraquat. European Review for Medical and Pharmacological Sciences, 20(1), 138–145.PubMedGoogle Scholar
  193. 193.
    Bazzoni, G., & Dejana, E. (2004). Endothelial cell-to-cell junctions: Molecular organization and role in vascular homeostasis. Physiological Reviews, 84(3), 869–901.PubMedCrossRefGoogle Scholar
  194. 194.
    Navarro, P., Ruco, L., & Dejana, E. (1998). Differential localization of VE- and N-cadherins in human endothelial cells: VE-cadherin competes with N-cadherin for junctional localization. The Journal of Cell Biology, 140(6), 1475–1484.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Rudini, N., & Dejana, E. (2008). Adherens junctions. Current Biology, 18(23), R1080–R1082.PubMedCrossRefGoogle Scholar
  196. 196.
    Overgaard, C. E., Daugherty, B. L., Mitchell, L. A., & Koval, M. (2011). Claudins: Control of barrier function and regulation in response to oxidant stress. Antioxidants & Redox Signaling, 15(5), 1179–1193.CrossRefGoogle Scholar
  197. 197.
    Cummins, P. M. (2012). Occludin: One protein, many forms. Molecular and Cellular Biology, 32(2), 242–250.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Garrido-Urbani, S., Bradfield, P. F., & Imhof, B. A. (2014). Tight junction dynamics: The role of junctional adhesion molecules (JAMs). Cell and Tissue Research, 355(3), 701–715.PubMedCrossRefGoogle Scholar
  199. 199.
    Aurrand-Lions, M., Johnson-Leger, C., Wong, C., Du Pasquier, L., & Imhof, B. A. (2001). Heterogeneity of endothelial junctions is reflected by differential expression and specific subcellular localization of the three JAM family members. Blood, 98(13), 3699–3707.PubMedCrossRefGoogle Scholar
  200. 200.
    van Wetering, S., van Buul, J. D., Quik, S., Mul, F. P., Anthony, E. C., ten Klooster, J. P., et al. (2002). Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. Journal of Cell Science, 115(Pt 9), 1837–1846.PubMedGoogle Scholar
  201. 201.
    Nwariaku, F. E., Liu, Z., Zhu, X., Nahari, D., Ingle, C., Wu, R. F., et al. (2004). NADPH oxidase mediates vascular endothelial cadherin phosphorylation and endothelial dysfunction. Blood, 104(10), 3214–3220.PubMedCrossRefGoogle Scholar
  202. 202.
    Dejana, E., Orsenigo, F., & Lampugnani, M. G. (2008). The role of adherens junctions and VE-cadherin in the control of vascular permeability. Journal of Cell Science, 121(Pt 13), 2115–2122.PubMedCrossRefGoogle Scholar
  203. 203.
    Wu, Z., Wang, Z., Dai, F., Liu, H., Ren, W., Chang, J., et al. (2016). Dephosphorylation of Y685-VE-cadherin involved in pulmonary microvascular endothelial barrier injury induced by angiotensin II. Mediators of Inflammation, 2016, 8696481.PubMedPubMedCentralGoogle Scholar
  204. 204.
    Tian, Y., Gawlak, G., O'Donnell, J. J., 3rd, Birukova, A. A., & Birukov, K. G. (2016). Activation of vascular endothelial growth factor (VEGF) receptor 2 mediates endothelial permeability caused by cyclic stretch. The Journal of Biological Chemistry, 291(19), 10032–10045.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Roberts, W. G., & Palade, G. E. (1995). Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. Journal of Cell Science, 108(Pt 6), 2369–2379.PubMedGoogle Scholar
  206. 206.
    Monaghan-Benson, E., & Burridge, K. (2009). The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species. The Journal of Biological Chemistry, 284(38), 25602–25611.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Ukropec, J. A., Hollinger, M. K., Salva, S. M., & Woolkalis, M. J. (2000). SHP2 association with VE-cadherin complexes in human endothelial cells is regulated by thrombin. The Journal of Biological Chemistry, 275(8), 5983–5986.PubMedCrossRefGoogle Scholar
  208. 208.
    Grinnell, K. L., Chichger, H., Braza, J., Duong, H., & Harrington, E. O. (2012). Protection against LPS-induced pulmonary edema through the attenuation of protein tyrosine phosphatase-1B oxidation. American Journal of Respiratory Cell and Molecular Biology, 46(5), 623–632.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Yang, J., Yao, W., Qian, G., Wei, Z., Wu, G., & Wang, G. (2015). Rab5-mediated VE-cadherin internalization regulates the barrier function of the lung microvascular endothelium. Cellular and Molecular Life Sciences, 72(24), 4849–4866.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    McCaffrey, G., Willis, C. L., Staatz, W. D., Nametz, N., Quigley, C. A., Hom, S., et al. (2009). Occludin oligomeric assemblies at tight junctions of the blood-brain barrier are altered by hypoxia and reoxygenation stress. Journal of Neurochemistry, 110(1), 58–71.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Maier, C. M., & Chan, P. H. (2002). Role of superoxide dismutases in oxidative damage and neurodegenerative disorders. The Neuroscientist, 8(4), 323–334.PubMedCrossRefGoogle Scholar
  212. 212.
    Jang, A. S., Concel, V. J., Bein, K., Brant, K. A., Liu, S., Pope-Varsalona, H., et al. (2011). Endothelial dysfunction and claudin 5 regulation during acrolein-induced lung injury. American Journal of Respiratory Cell and Molecular Biology, 44(4), 483–490.PubMedCrossRefGoogle Scholar
  213. 213.
    Song, M. J., Davidovich, N., Lawrence, G. G., & Margulies, S. S. (2016). Superoxide mediates tight junction complex dissociation in cyclically stretched lung slices. Journal of Biomechanics, 49(8), 1330–1335.PubMedCrossRefGoogle Scholar
  214. 214.
    Bellmann, C., Schreivogel, S., Gunther, R., Dabrowski, S., Schumann, M., Wolburg, H., et al. (2014). Highly conserved cysteines are involved in the oligomerization of occludin-redox dependency of the second extracellular loop. Antioxidants & Redox Signaling, 20(6), 855–867.CrossRefGoogle Scholar
  215. 215.
    Walter, J. K., Castro, V., Voss, M., Gast, K., Rueckert, C., Piontek, J., et al. (2009). Redox-sensitivity of the dimerization of occludin. Cellular and Molecular Life Sciences, 66(22), 3655–3662.PubMedCrossRefGoogle Scholar
  216. 216.
    Kokura, S., Wolf, R. E., Yoshikawa, T., Granger, D. N., & Aw, T. Y. (1999). Molecular mechanisms of neutrophil-endothelial cell adhesion induced by redox imbalance. Circulation Research, 84(5), 516–524.PubMedCrossRefGoogle Scholar
  217. 217.
    Rahman, I., & MacNee, W. (2000). Oxidative stress and regulation of glutathione in lung inflammation. The European Respiratory Journal, 16(3), 534–554.PubMedCrossRefGoogle Scholar
  218. 218.
    Kevil, C. G., Oshima, T., Alexander, B., Coe, L. L., & Alexander, J. S. (2000). H(2)O(2)-mediated permeability: Role of MAPK and occludin. American Journal of Physiology. Cell Physiology, 279(1), C21–C30.PubMedGoogle Scholar
  219. 219.
    Reutershan, J., Stockton, R., Zarbock, A., Sullivan, G. W., Chang, D., Scott, D., et al. (2007). Blocking p21-activated kinase reduces lipopolysaccharide-induced acute lung injury by preventing polymorphonuclear leukocyte infiltration. American Journal of Respiratory and Critical Care Medicine, 175(10), 1027–1035.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Hidaka, H., Hagiwara, M., Ishikawa, T., & Saitoh, M. (1989). Role of protein phosphorylation in Ca2+ regulated intracellular messenger systems. Microcirculation, Endothelium, and Lymphatics, 5(1–2), 13–29.PubMedGoogle Scholar
  221. 221.
    Ridley, A. J. (2015). Rho GTPase signalling in cell migration. Current Opinion in Cell Biology, 36, 103–112.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Ridley, A. J., & Hall, A. (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 70(3), 389–399.PubMedCrossRefGoogle Scholar
  223. 223.
    Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., & Hall, A. (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell, 70(3), 401–410.PubMedCrossRefGoogle Scholar
  224. 224.
    Nobes, C. D., & Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 81(1), 53–62.PubMedCrossRefGoogle Scholar
  225. 225.
    Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., et al. (1996). Phosphorylation and activation of myosin by rho-associated kinase (rho-kinase). The Journal of Biological Chemistry, 271(34), 20246–20249.PubMedCrossRefGoogle Scholar
  226. 226.
    Lawson, C. D., & Burridge, K. (2014). The on-off relationship of rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases, 5, e27958.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Rossi, J. L., Velentza, A. V., Steinhorn, D. M., Watterson, D. M., & Wainwright, M. S. (2007). MLCK210 gene knockout or kinase inhibition preserves lung function following endotoxin-induced lung injury in mice. American Journal of Physiology. Lung Cellular and Molecular Physiology, 292(6), L1327–L1334.PubMedCrossRefGoogle Scholar
  228. 228.
    Cioffi, D. L., Barry, C., & Stevens, T. (2010). Store-operated calcium entry channels in pulmonary endothelium: The emerging story of TRPCS and Orai1. Adv. Exp. Med. Biol., 661, 137–154.PubMedCrossRefGoogle Scholar
  229. 229.
    Lum, H., Del Vecchio, P. J., Schneider, A. S., Goligorsky, M. S., & Malik, A. B. (1989). Calcium dependence of the thrombin-induced increase in endothelial albumin permeability. Journal of Applied Physiology, 66(3), 1471–1476.PubMedCrossRefGoogle Scholar
  230. 230.
    Malik, A. B., & Fenton, J. W., 2nd. (1992). Thrombin-mediated increase in vascular endothelial permeability. Seminars in Thrombosis and Hemostasis, 18(2), 193–199.PubMedCrossRefGoogle Scholar
  231. 231.
    Hamdollah Zadeh, M. A., Glass, C. A., Magnussen, A., Hancox, J. C., & Bates, D. O. (2008). VEGF-mediated elevated intracellular calcium and angiogenesis in human microvascular endothelial cells in vitro are inhibited by dominant negative TRPC6. Microcirculation, 15(7), 605–614.PubMedCrossRefGoogle Scholar
  232. 232.
    Mehta, D., Ahmmed, G. U., Paria, B. C., Holinstat, M., Voyno-Yasenetskaya, T., Tiruppathi, C., et al. (2003). RhoA interaction with inositol 1,4,5-trisphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry. Role in signaling increased endothelial permeability. The Journal of Biological Chemistry, 278(35), 33492–33500.PubMedCrossRefGoogle Scholar
  233. 233.
    Villalta, P. C., & Townsley, M. I. (2013). Transient receptor potential channels and regulation of lung endothelial permeability. Pulmonary Circulation, 3(4), 802–815.PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Siflinger-Birnboim, A., Goligorsky, M. S., Del Vecchio, P. J., & Malik, A. B. (1992). Activation of protein kinase C pathway contributes to hydrogen peroxide-induced increase in endothelial permeability. Laboratory Investigation, 67(1), 24–30.PubMedGoogle Scholar
  235. 235.
    Kuhn, F. J., Heiner, I., & Luckhoff, A. (2005). TRPM2: A calcium influx pathway regulated by oxidative stress and the novel second messenger ADP-ribose. Pflugers Archiv, 451(1), 212–219.PubMedCrossRefGoogle Scholar
  236. 236.
    Perraud, A. L., Takanishi, C. L., Shen, B., Kang, S., Smith, M. K., Schmitz, C., et al. (2005). Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. The Journal of Biological Chemistry, 280(7), 6138–6148.PubMedCrossRefGoogle Scholar
  237. 237.
    Bogatcheva, N. V., Adyshev, D., Mambetsariev, B., Moldobaeva, N., & Verin, A. D. (2007). Involvement of microtubules, p38, and rho kinases pathway in 2-methoxyestradiol-induced lung vascular barrier dysfunction. American Journal of Physiology. Lung Cellular and Molecular Physiology, 292(2), L487–L499.PubMedCrossRefGoogle Scholar
  238. 238.
    Le Grand, M., Rovini, A., Bourgarel-Rey, V., Honore, S., Bastonero, S., Braguer, D., et al. (2014). ROS-mediated EB1 phosphorylation through Akt/GSK3beta pathway: Implication in cancer cell response to microtubule-targeting agents. Oncotarget, 5(10), 3408–3423.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Harkcom, W. T., Ghosh, A. K., Sung, M. S., Matov, A., Brown, K. D., Giannakakou, P., et al. (2014). NAD+ and SIRT3 control microtubule dynamics and reduce susceptibility to antimicrotubule agents. Proceedings of the National Academy of Sciences of the United States of America, 111(24), E2443–E2452.PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Kratzer, E., Tian, Y., Sarich, N., Wu, T., Meliton, A., Leff, A., et al. (2012). Oxidative stress contributes to lung injury and barrier dysfunction via microtubule destabilization. American Journal of Respiratory Cell and Molecular Biology, 47(5), 688–697.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Mirzapoiazova, T., Kolosova, I. A., Moreno, L., Sammani, S., Garcia, J. G., & Verin, A. D. (2007). Suppression of endotoxin-induced inflammation by taxol. The European Respiratory Journal, 30(3), 429–435.PubMedCrossRefGoogle Scholar
  242. 242.
    Islam, M. S., Kabir, A. M., Inoue, D., Sada, K., & Kakugo, A. (2016). Enhanced dynamic instability of microtubules in a ROS free inert environment. Biophysical Chemistry, 211, 1–8.PubMedCrossRefGoogle Scholar
  243. 243.
    Woodfin, A., Voisin, M. B., & Nourshargh, S. (2010). Recent developments and complexities in neutrophil transmigration. Current Opinion in Hematology, 17(1), 9–17.PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Filippi, M. D. (2016). Mechanism of Diapedesis: Importance of the Transcellular route. Advances in Immunology, 129, 25–53.PubMedCrossRefGoogle Scholar
  245. 245.
    Hafezi-Moghadam, A., Thomas, K. L., Prorock, A. J., Huo, Y., & Ley, K. (2001). L-selectin shedding regulates leukocyte recruitment. The Journal of experimental medicine., 193(7), 863–872.PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Barthel, S. R., Gavino, J. D., Descheny, L., & Dimitroff, C. J. (2007). Targeting selectins and selectin ligands in inflammation and cancer. Expert Opinion on Therapeutic Targets, 11(11), 1473–1491.PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Zarbock, A., Ley, K., McEver, R. P., & Hidalgo, A. (2011). Leukocyte ligands for endothelial selectins: Specialized glycoconjugates that mediate rolling and signaling under flow. Blood, 118(26), 6743–6751.PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Griffin, G. K., Newton, G., Tarrio, M. L., Bu, D. X., Maganto-Garcia, E., Azcutia, V., et al. (2012). IL-17 and TNF-alpha sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. Journal of Immunology, 188(12), 6287–6299.CrossRefGoogle Scholar
  249. 249.
    Hynes, R. O. (2002). Integrins: Bidirectional, allosteric signaling machines. Cell, 110(6), 673–687.PubMedCrossRefGoogle Scholar
  250. 250.
    Barczyk, M., Carracedo, S., & Gullberg, D. (2010). Integrins. Cell and Tissue Research, 339(1), 269–280.PubMedCrossRefGoogle Scholar
  251. 251.
    Zarbock, A., & Ley, K. (2008). Mechanisms and consequences of neutrophil interaction with the endothelium. The American Journal of Pathology, 172(1), 1–7.PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Smith, M. L., Olson, T. S., & Ley, K. (2004). CXCR2- and E-selectin-induced neutrophil arrest during inflammation in vivo. The Journal of Experimental Medicine., 200(7), 935–939.PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Evans, R., Patzak, I., Svensson, L., De Filippo, K., Jones, K., McDowall, A., et al. (2009). Integrins in immunity. Journal of Cell Science, 122(Pt 2), 215–225.PubMedCrossRefGoogle Scholar
  254. 254.
    Haraldsen, G., Kvale, D., Lien, B., Farstad, I. N., & Brandtzaeg, P. (1996). Cytokine-regulated expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in human microvascular endothelial cells. Journal of Immunology, 156(7), 2558–2565.Google Scholar
  255. 255.
    Muller, W. A. (2016). Transendothelial migration: Unifying principles from the endothelial perspective. Immunological Reviews, 273(1), 61–75.PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Schmidt, E. P., Kuebler, W. M., Lee, W. L., & Downey, G. P. (2016). Adhesion molecules: Master controllers of the circulatory system. Comprehensive Physiology, 6(2), 945–973.PubMedCrossRefGoogle Scholar
  257. 257.
    Ku, S. K., Zhou, W., Lee, W., Han, M. S., Na, M., & Bae, J. S. (2015). Anti-inflammatory effects of hyperoside in human endothelial cells and in mice. Inflammation, 38(2), 784–799.PubMedCrossRefGoogle Scholar
  258. 258.
    Zhou, X., Dai, Q., & Huang, X. (2012). Neutrophils in acute lung injury. Frontiers in Bioscience, 17, 2278–2283.CrossRefGoogle Scholar
  259. 259.
    Natarajan, R., Fisher, B. J., Jones, D. G., Ghosh, S., & Fowler, A. A., 3rd. (2002). Reoxygenating microvascular endothelium exhibits temporal dissociation of NF-kappaB and AP-1 activation. Free Radical Biology & Medicine, 32(10), 1033–1045.CrossRefGoogle Scholar
  260. 260.
    Lo, S. K., Janakidevi, K., Lai, L., & Malik, A. B. (1993). Hydrogen peroxide-induced increase in endothelial adhesiveness is dependent on ICAM-1 activation. The American Journal of Physiology, 264(4 Pt 1), L406–L412.PubMedGoogle Scholar
  261. 261.
    Lakshmi, S. P., Reddy, A. T., Naik, M. U., Naik, U. P., & Reddy, R. C. (2012). Effects of JAM-A deficiency or blocking antibodies on neutrophil migration and lung injury in a murine model of ALI. American Journal of Physiology. Lung Cellular and Molecular Physiology, 303(9), L758–L766.PubMedPubMedCentralCrossRefGoogle Scholar
  262. 262.
    Patel, K. D., Zimmerman, G. A., Prescott, S. M., McEver, R. P., & McIntyre, T. M. (1991). Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils. The Journal of Cell Biology, 112(4), 749–759.PubMedCrossRefGoogle Scholar
  263. 263.
    Ichikawa, H., Flores, S., Kvietys, P. R., Wolf, R. E., Yoshikawa, T., Granger, D. N., et al. (1997). Molecular mechanisms of anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells. Circulation Research, 81(6), 922–931.PubMedCrossRefGoogle Scholar
  264. 264.
    Liu, G., Vogel, S. M., Gao, X., Javaid, K., Hu, G., Danilov, S. M., et al. (2011). Src phosphorylation of endothelial cell surface intercellular adhesion molecule-1 mediates neutrophil adhesion and contributes to the mechanism of lung inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(6), 1342–1350.PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Read, M. A., Whitley, M. Z., Williams, A. J., & Collins, T. (1994). NF-kappa B and I kappa B alpha: An inducible regulatory system in endothelial activation. The Journal of Experimental Medicine, 179(2), 503–512.PubMedCrossRefGoogle Scholar
  266. 266.
    Lockyer, J. M., Colladay, J. S., Alperin-Lea, W. L., Hammond, T., & Buda, A. J. (1998). Inhibition of nuclear factor-kappaB-mediated adhesion molecule expression in human endothelial cells. Circulation Research, 82(3), 314–320.PubMedCrossRefGoogle Scholar
  267. 267.
    Iademarco, M. F., McQuillan, J. J., Rosen, G. D., & Dean, D. C. (1992). Characterization of the promoter for vascular cell adhesion molecule-1 (VCAM-1). The Journal of Biological Chemistry, 267(23), 16323–16329.PubMedGoogle Scholar
  268. 268.
    Ledebur, H. C., & Parks, T. P. (1995). Transcriptional regulation of the intercellular adhesion molecule-1 gene by inflammatory cytokines in human endothelial cells. Essential roles of a variant NF-kappa B site and p65 homodimers. The Journal of Biological Chemistry, 270(2), 933–943.PubMedCrossRefGoogle Scholar
  269. 269.
    Roebuck, K. A., & Finnegan, A. (1999). Regulation of intercellular adhesion molecule-1 (CD54) gene expression. Journal of Leukocyte Biology, 66(6), 876–888.PubMedGoogle Scholar
  270. 270.
    Matheny, H. E., Deem, T. L., & Cook-Mills, J. M. (2000). Lymphocyte migration through monolayers of endothelial cell lines involves VCAM-1 signaling via endothelial cell NADPH oxidase. Journal of Immunology, 164(12), 6550–6559.CrossRefGoogle Scholar
  271. 271.
    KSS, S., Veeramohan, P. H., Mathew, T., S, S., & C, M. (2012). Nifedipine inhibits hypoxia induced transvascular leakage through down regulation of NFkB. Respiratory Physiology & Neurobiology, 183(1), 26–34.CrossRefGoogle Scholar
  272. 272.
    Li, X. F., Ouyang, B., Wu, J. F., Chen, J., & Guan, X. D. (2011). N-acetylcysteine (NAC) inhibited pulmonary fibrosis in acute respiratory distress syndrome (ARDS). Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 23(10), 599–601.PubMedGoogle Scholar
  273. 273.
    Mitsopoulos, P., Omri, A., Alipour, M., Vermeulen, N., Smith, M. G., & Suntres, Z. E. (2008). Effectiveness of liposomal-N-acetylcysteine against LPS-induced lung injuries in rodents. International Journal of Pharmaceutics, 363(1–2), 106–111.PubMedCrossRefGoogle Scholar
  274. 274.
    Davreux, C. J., Soric, I., Nathens, A. B., Watson, R. W., McGilvray, I. D., Suntres, Z. E., et al. (1997). N-acetyl cysteine attenuates acute lung injury in the rat. Shock, 8(6), 432–438.PubMedCrossRefGoogle Scholar
  275. 275.
    Soltan-Sharifi, M. S., Mojtahedzadeh, M., Najafi, A., Reza Khajavi, M., Reza Rouini, M., Moradi, M., et al. (2007). Improvement by N-acetylcysteine of acute respiratory distress syndrome through increasing intracellular glutathione, and extracellular thiol molecules and anti-oxidant power: Evidence for underlying toxicological mechanisms. Human & Experimental Toxicology, 26(9), 697–703.CrossRefGoogle Scholar
  276. 276.
    Bernard, G. R., Wheeler, A. P., Arons, M. M., Morris, P. E., Paz, H. L., Russell, J. A., et al. (1997). A trial of antioxidants N-acetylcysteine and procysteine in ARDS. The antioxidant in ARDS study group. Chest, 112(1), 164–172.PubMedCrossRefGoogle Scholar
  277. 277.
    Zhang, R. H., Li, C. H., Wang, C. L., Xu, M. J., Xu, T., Wei, D., et al. (2014). N-acetyl-l-cystine (NAC) protects against H9N2 swine influenza virus-induced acute lung injury. International Immunopharmacology, 22(1), 1–8.PubMedCrossRefGoogle Scholar
  278. 278.
    Choi, J. S., Lee, H. S., Seo, K. H., Na, J. O., Kim, Y. H., Uh, S. T., et al. (2012). The effect of post-treatment N-acetylcysteine in LPS-induced acute lung injury of rats. Tuberc Respir Dis (Seoul), 73(1), 22–31.CrossRefGoogle Scholar
  279. 279.
    Ignarro, L. J., Cirino, G., Casini, A., & Napoli, C. (1999). Nitric oxide as a signaling molecule in the vascular system: An overview. Journal of Cardiovascular Pharmacology, 34(6), 879–886.PubMedCrossRefGoogle Scholar
  280. 280.
    Akmal, A. H., & Hasan, M. (2008). Role of nitric oxide in management of acute respiratory distress syndrome. Annals of Thoracic Medicine, 3(3), 100–103.PubMedPubMedCentralCrossRefGoogle Scholar
  281. 281.
    Hunt, J. L., Bronicki, R. A., & Anas, N. (2016). Role of inhaled nitric oxide in the Management of Severe Acute Respiratory Distress Syndrome. Frontiers in Pediatrics, 4, 74.PubMedPubMedCentralCrossRefGoogle Scholar
  282. 282.
    Su, C. F., Kao, S. J., & Chen, H. I. (2012). Acute respiratory distress syndrome and lung injury: Pathogenetic mechanism and therapeutic implication. World Journal of Critical Care Medicine, 1(2), 50–60.PubMedPubMedCentralCrossRefGoogle Scholar
  283. 283.
    Gebistorf, F., Karam, O., Wetterslev, J., & Afshari, A. (2016). Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database of Systematic Reviews, 6, CD002787.Google Scholar
  284. 284.
    Wallace, J. L., & Wang, R. (2015). Hydrogen sulfide-based therapeutics: Exploiting a unique but ubiquitous gasotransmitter. Nature Reviews. Drug Discovery, 14(5), 329–345.PubMedCrossRefGoogle Scholar
  285. 285.
    Chan, M. V., & Wallace, J. L. (2013). Hydrogen sulfide-based therapeutics and gastrointestinal diseases: Translating physiology to treatments. American Journal of Physiology. Gastrointestinal and Liver Physiology, 305(7), G467–G473.PubMedCrossRefGoogle Scholar
  286. 286.
    Du, Q., Wang, C., Zhang, N., Li, G., Zhang, M., Li, L., et al. (2014). In vivo study of the effects of exogenous hydrogen sulfide on lung mitochondria in acute lung injury in rats. BMC Anesthesiology, 14, 117.PubMedPubMedCentralCrossRefGoogle Scholar
  287. 287.
    Liu, W., Liu, K., Ma, C., Yu, J., Peng, Z., Huang, G., et al. (2014). Protective effect of hydrogen sulfide on hyperbaric hyperoxia-induced lung injury in a rat model. Undersea & Hyperbaric Medicine, 41(6), 573–578.Google Scholar
  288. 288.
    Ji, X., Damera, K., Zheng, Y., Yu, B., Otterbein, L. E., & Wang, B. (2016). Toward carbon monoxide-based therapeutics: Critical drug delivery and Developability issues. Journal of Pharmaceutical Sciences, 105(2), 406–416.PubMedPubMedCentralCrossRefGoogle Scholar
  289. 289.
    Gibbons, S. J., Verhulst, P. J., Bharucha, A., & Farrugia, G. (2013). Review article: Carbon monoxide in gastrointestinal physiology and its potential in therapeutics. Alimentary Pharmacology & Therapeutics, 38(7), 689–702.CrossRefGoogle Scholar
  290. 290.
    Sheikh, S. Z., Hegazi, R. A., Kobayashi, T., Onyiah, J. C., Russo, S. M., Matsuoka, K., et al. (2011). An anti-inflammatory role for carbon monoxide and heme oxygenase-1 in chronic Th2-mediated murine colitis. Journal of Immunology, 186(9), 5506–5513.CrossRefGoogle Scholar
  291. 291.
    Ryter, S. W., & Choi, A. M. (2010). Heme oxygenase-1/carbon monoxide: Novel therapeutic strategies in critical care medicine. Current Drug Targets, 11(12), 1485–1494.PubMedCrossRefGoogle Scholar
  292. 292.
    Griffith, B., Pendyala, S., Hecker, L., Lee, P. J., Natarajan, V., & Thannickal, V. J. (2009). NOX enzymes and pulmonary disease. Antioxidants & Redox Signaling, 11(10), 2505–2516.CrossRefGoogle Scholar
  293. 293.
    Abdelmageed, M. E., El-Awady, M. S., & Suddek, G. M. (2016). Apocynin ameliorates endotoxin-induced acute lung injury in rats. International Immunopharmacology, 30, 163–170.PubMedCrossRefGoogle Scholar
  294. 294.
    Choi, S. H., Suh, G. J., Kwon, W. Y., Kim, K. S., Park, M. J., Kim, T., et al. (2017). Apocynin suppressed the nuclear factor-kappaB pathway and attenuated lung injury in a rat hemorrhagic shock model. Journal of Trauma and Acute Care Surgery, 82(3), 566–574.PubMedCrossRefGoogle Scholar
  295. 295.
    Imai, Y., Kuba, K., Neely, G. G., Yaghubian-Malhami, R., Perkmann, T., van Loo, G., et al. (2008). Identification of oxidative stress and toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell, 133(2), 235–249.PubMedCrossRefGoogle Scholar
  296. 296.
    Yang, C., Moriuchi, H., Takase, J., Ishitsuka, Y., Irikura, M., & Irie, T. (2003). Oxidative stress in early stage of acute lung injury induced with oleic acid in guinea pigs. Biological & Pharmaceutical Bulletin, 26(4), 424–428.CrossRefGoogle Scholar
  297. 297.
    Peng, S., Hang, N., Liu, W., Guo, W., Jiang, C., Yang, X., et al. (2016). Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-kappaB pathways. Acta Pharmaceutica Sinica B, 6(3), 205–211.PubMedPubMedCentralCrossRefGoogle Scholar
  298. 298.
    Zhu, T., Wang, D. X., Zhang, W., Liao, X. Q., Guan, X., Bo, H., et al. (2013). Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-kappaB. PloS One, 8(2), e56407.PubMedPubMedCentralCrossRefGoogle Scholar
  299. 299.
    Chen, T., Mou, Y., Tan, J., Wei, L., Qiao, Y., Wei, T., et al. (2015). The protective effect of CDDO-me on lipopolysaccharide-induced acute lung injury in mice. International Immunopharmacology, 25(1), 55–64.PubMedCrossRefGoogle Scholar
  300. 300.
    Reddy, N. M., Suryanaraya, V., Yates, M. S., Kleeberger, S. R., Hassoun, P. M., Yamamoto, M., et al. (2009). The triterpenoid CDDO-imidazolide confers potent protection against hyperoxic acute lung injury in mice. American Journal of Respiratory and Critical Care Medicine, 180(9), 867–874.PubMedPubMedCentralCrossRefGoogle Scholar
  301. 301.
    Griffin, J. H., Fernandez, J. A., Gale, A. J., & Mosnier, L. O. (2007). Activated protein C. Journal of Thrombosis and Haemostasis, 5(Suppl 1), 73–80.PubMedCrossRefGoogle Scholar
  302. 302.
    Cornet, A. D., Hofstra, J. J., Vlaar, A. P., Tuinman, P. R., Levi, M., Girbes, A. R., et al. (2013). Activated protein C attenuates pulmonary coagulopathy in patients with acute respiratory distress syndrome. Journal of Thrombosis and Haemostasis, 11(5), 894–901.PubMedCrossRefGoogle Scholar
  303. 303.
    Cornet, A. D., Groeneveld, A. B., Hofstra, J. J., Vlaar, A. P., Tuinman, P. R., van Lingen, A., et al. (2014). Recombinant human activated protein C in the treatment of acute respiratory distress syndrome: A randomized clinical trial. PloS One, 9(3), e90983.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Manuela Kellner
    • 1
  • Satish Noonepalle
    • 1
  • Qing Lu
    • 1
  • Anup Srivastava
    • 1
  • Evgeny Zemskov
    • 1
  • Stephen M. Black
    • 1
    Email author
  1. 1.Department of MedicineCenter for Lung Vascular Pathobiology, University of ArizonaTucsonUSA

Personalised recommendations