Natural Antioxidants as Potential Therapy, and a Promising Role for Melatonin Against Pulmonary Hypertension

  • Gerald J. Maarman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 967)


Plasma and serum samples, and lung/heart tissue of pulmonary hypertension (PH) patients and animal models of PH display elevated oxidative stress. Moreover, the severity of PH and levels of oxidative stress increase concurrently, which suggests that oxidative stress could be utilized as a biomarker for PH progression. Accumulating evidence has well established that oxidative stress is also key role player in the development of PH. Preclinical studies have demonstrated that natural antioxidants improved PH condition, and, therefore, antioxidant therapy has been proposed as a potential therapeutic strategy against PH. These natural antioxidants include medicinal plant extracts and compounds such as resveratrol and melatonin. Recent studies suggest that melatonin provides health benefit against PH, by enhancing antioxidant capacity, increasing vasodilation, counteracting lung and cardiac fibrosis, and stunting right ventricular (RV) hypertrophy/failure. This chapter comprehensively reviews and discusses a variety of natural antioxidants and their efficacy in modulating experimental PH. This chapter also demonstrates that antioxidant therapy remains a therapeutic strategy for PH, and particularly identifies melatonin as a safe, cost-effective, and promising antioxidant therapy.


Pulmonary hypertension Antioxidant therapy Oxidative stress Melatonin 





Mean pulmonary arterial pressure


Pulmonary artery


Pulmonary artery acceleration time


Pulmonary arterial pressure


Pulmonary arterial smooth muscle cells


Pulmonary hypertension


Pulmonary vascular resistance


Right ventricle/right ventricular



I would like to thank the National Research Foundation of South Africa, for financial support via the NRF Collaborative Postgraduate Training Award, as well as the University of Cape Town. A further thanks is extended to the Canon Collins Educational Trust, and the Oppenheimer Memorial Trust for financial assistance.


  1. 1.
    Sanchez, O., Marcos, E., Perros, F., Fadel, E., Tu, L., Humbert, M., Dartevelle, P., Simonneau, G., Adnot, S., & Eddahibi, S. (2007). Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 176(10), 1041–1047. doi: 10.1164/rccm.200610-1559OC.PubMedCrossRefGoogle Scholar
  2. 2.
    Guignabert, C., Tu, L., Le Hiress, M., Ricard, N., Sattler, C., Seferian, A., Huertas, A., Humbert, M., & Montani, D. (2013). Pathogenesis of pulmonary arterial hypertension: Lessons from cancer. European Respiratory Review, 22(130), 543–551. doi: 10.1183/09059180.00007513.PubMedCrossRefGoogle Scholar
  3. 3.
    Balabanian, K., Foussat, A., Dorfmuller, P., Durand-Gasselin, I., Capel, F., Bouchet-Delbos, L., Portier, A., Marfaing-Koka, A., Krzysiek, R., Rimaniol, A. C., Simonneau, G., Emilie, D., & Humbert, M. (2002). CX(3)C chemokine fractalkine in pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 165(10), 1419–1425. doi: 10.1164/rccm.2106007.PubMedCrossRefGoogle Scholar
  4. 4.
    Todorovich-Hunter, L., Dodo, H., Ye, C., McCready, L., Keeley, F. W., & Rabinovitch, M. (1992). Increased pulmonary artery elastolytic activity in adult rats with monocrotaline-induced progressive hypertensive pulmonary vascular disease compared with infant rats with nonprogressive disease. The American Review of Respiratory Disease, 146(1), 213–223. doi: 10.1164/ajrccm/146.1.213.PubMedCrossRefGoogle Scholar
  5. 5.
    Rabinovitch, M. (2012). Molecular pathogenesis of pulmonary arterial hypertension. The Journal of Clinical Investigation, 122(12), 4306–4313. doi: 10.1172/JCI60658.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Huertas, A., Perros, F., Tu, L., Cohen-Kaminsky, S., Montani, D., Dorfmuller, P., Guignabert, C., & Humbert, M. (2014). Immune dysregulation and endothelial dysfunction in pulmonary arterial hypertension: A complex interplay. Circulation, 129(12), 1332–1340. doi: 10.1161/CIRCULATIONAHA.113.004555.PubMedCrossRefGoogle Scholar
  7. 7.
    Rabinovitch, M. (1998). Elastase and the pathobiology of unexplained pulmonary hypertension. Chest, 114(3 Suppl), 213S–224S.PubMedCrossRefGoogle Scholar
  8. 8.
    Rabinovitch, M. (1999). Pulmonary hypertension: Pathophysiology as a basis for clinical decision making. The Journal of Heart and Lung Transplantation, 18(11), 1041–1053.PubMedCrossRefGoogle Scholar
  9. 9.
    Rabinovitch, M. (2007). Pathobiology of pulmonary hypertension. Annual Review of Pathology, 2, 369–399. doi: 10.1146/annurev.pathol.2.010506.092033.PubMedCrossRefGoogle Scholar
  10. 10.
    Christman, B. W., McPherson, C. D., Newman, J. H., King, G. A., Bernard, G. R., Groves, B. M., & Loyd, J. E. (1992). An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. The New England Journal of Medicine, 327(2), 70–75. doi: 10.1056/NEJM199207093270202.PubMedCrossRefGoogle Scholar
  11. 11.
    Xia, X. D., Xu, Z. J., Hu, X. G., Wu, C. Y., Dai, Y. R., & Yang, L. (2012). Impaired iNOS-sGC-cGMP signalling contributes to chronic hypoxic and hypercapnic pulmonary hypertension in rat. Cell Biochemistry and Function, 30(4), 279–285. doi: 10.1002/cbf.2796.PubMedCrossRefGoogle Scholar
  12. 12.
    Cogan, J. D., Vnencak-Jones, C. L., Phillips, J. A., III,Lane, K. B., Wheeler, L. A., Robbins, I. M., Garrison, G., Hedges, L. K., & Loyd, J. E. (2005). Gross BMPR2 gene rearrangements constitute a new cause for primary pulmonary hypertension. Genetics in Medicine, 7(3), 169–174. doi: 10.109701.GIM.0000156525.09595.E9.PubMedCrossRefGoogle Scholar
  13. 13.
    Morrell, N. W. (2006). Pulmonary hypertension due to BMPR2 mutation: A new paradigm for tissue remodeling? Proceedings of the American Thoracic Society, 3(8), 680–686. doi: 10.1513/pats.200605-118SF.PubMedCrossRefGoogle Scholar
  14. 14.
    Ghasemzadeh, N., Patel, R. S., Eapen, D. J., Veledar, E., Al Kassem, H., Manocha, P., Khayata, M., Zafari, A. M., Sperling, L., Jones, D. P., & Quyyumi, A. A. (2014). Oxidative stress is associated with increased pulmonary artery systolic pressure in humans. Hypertension, 63(6), 1270–1275. doi: 10.1161/HYPERTENSIONAHA.113.02360.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Zhang, S., Yang, T., Xu, X., Wang, M., Zhong, L., Yang, Y., Zhai, Z., Xiao, F., & Wang, C. (2015). Oxidative stress and nitric oxide signaling related biomarkers in patients with pulmonary hypertension: A case control study. BMC Pulmonary Medicine, 15(1), 50. doi: 10.1186/s12890-015-0045-8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Teixeira-Mendonca, C., & Henriques-Coelho, T. (2013). Pathophysiology of pulmonary hypertension in newborns: Therapeutic indications. Revista Portuguesa de Cardiologia, 32(12), 1005–1012. doi: 10.1016/j.repc.2013.06.010.PubMedCrossRefGoogle Scholar
  17. 17.
    Voelkel, N. F., Gomez-Arroyo, J., Abbate, A., Bogaard, H. J., & Nicolls, M. R. (2012). Pathobiology of pulmonary arterial hypertension and right ventricular failure. The European Respiratory Journal, 40(6), 1555–1565. doi: 10.1183/09031936.00046612.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Demarco, V. G., Whaley-Connell, A. T., Sowers, J. R., Habibi, J., & Dellsperger, K. C. (2010). Contribution of oxidative stress to pulmonary arterial hypertension. World Journal of Cardiology, 2(10), 316–324. doi: 10.4330/wjc.v2.i10.316.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Crosswhite, P., & Sun, Z. (2010). Nitric oxide, oxidative stress and inflammation in pulmonary arterial hypertension. Journal of Hypertension, 28(2), 201–212. doi: 10.1097/HJH.0b013e328332bcdb.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ahmed, L. A., Obaid, A. A., Zaki, H. F., & Agha, A. M. (2014). Role of oxidative stress, inflammation, nitric oxide and transforming growth factor-beta in the protective effect of diosgenin in monocrotaline-induced pulmonary hypertension in rats. European Journal of Pharmacology, 740, 379–387. doi: 10.1016/j.ejphar.2014.07.026.PubMedCrossRefGoogle Scholar
  21. 21.
    Majzunova, M., Dovinova, I., Barancik, M., & Chan, J. Y. (2013). Redox signaling in pathophysiology of hypertension. Journal of Biomedical Science, 20, 69. doi: 10.1186/1423-0127-20-69.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bowers, R., Cool, C., Murphy, R. C., Tuder, R. M., Hopken, M. W., Flores, S. C., & Voelkel, N. F. (2004). Oxidative stress in severe pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine, 169(6), 764–769. doi: 10.1164/rccm.200301-147OC.PubMedCrossRefGoogle Scholar
  23. 23.
    Farber, H. W., & Loscalzo, J. (2004). Pulmonary arterial hypertension. The New England Journal of Medicine, 351(16), 1655–1665. doi: 10.1056/NEJMra035488.PubMedCrossRefGoogle Scholar
  24. 24.
    Farley, K. S., Wang, L., & Mehta, S. (2009). Septic pulmonary microvascular endothelial cell injury: Role of alveolar macrophage NADPH oxidase. American Journal of Physiology. Lung Cellular and Molecular Physiology, 296(3), L480–L488. doi: 10.1152/ajplung.90201.2008.PubMedCrossRefGoogle Scholar
  25. 25.
    Jurasz, P., Courtman, D., Babaie, S., & Stewart, D. J. (2010). Role of apoptosis in pulmonary hypertension: From experimental models to clinical trials. Pharmacology & Therapeutics, 126(1), 1–8. doi: 10.1016/j.pharmthera.2009.12.006.CrossRefGoogle Scholar
  26. 26.
    Jonigk, D., Golpon, H., Bockmeyer, C. L., Maegel, L., Hoeper, M. M., Gottlieb, J., Nickel, N., Hussein, K., Maus, U., Lehmann, U., Janciauskiene, S., Welte, T., Haverich, A., Rische, J., Kreipe, H., & Laenger, F. (2011). Plexiform lesions in pulmonary arterial hypertension composition, architecture, and microenvironment. The American Journal of Pathology, 179(1), 167–179. doi: 10.1016/j.ajpath.2011.03.040.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Abe, K., Toba, M., Alzoubi, A., Ito, M., Fagan, K. A., Cool, C. D., Voelkel, N. F., McMurtry, I. F., & Oka, M. (2010). Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation, 121(25), 2747–2754. doi: 10.1161/CIRCULATIONAHA.109.927681.PubMedCrossRefGoogle Scholar
  28. 28.
    Voelkel, N. F., Gomez-Arroyo, J., Abbate, A., & Bogaard, H. J. (2013). Mechanisms of right heart failure—A work in progress and a plea for failure prevention. Pulmonary Circulation, 3(1), 137–143. doi: 10.4103/2045-8932.109957.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Vonk-Noordegraaf, A., Haddad, F., Chin, K. M., Forfia, P. R., Kawut, S. M., Lumens, J., Naeije, R., Newman, J., Oudiz, R. J., Provencher, S., Torbicki, A., Voelkel, N. F., & Hassoun, P. M. (2013). Right heart adaptation to pulmonary arterial hypertension: Physiology and pathobiology. Journal of the American College of Cardiology, 62(25 Suppl), D22–D33. doi: 10.1016/j.jacc.2013.10.027.PubMedCrossRefGoogle Scholar
  30. 30.
    Ruocco, G., & Palazzuoli, A. (2015). Early detection of pulmonary arterial hypertension: Do not forget the right ventricle. Nature Reviews. Cardiology, 12(3), 134. doi: 10.1038/nrcardio.2014.191-c1.PubMedCrossRefGoogle Scholar
  31. 31.
    Ryan, J. J., & Archer, S. L. (2015). Emerging concepts in the molecular basis of pulmonary arterial hypertension: Part I: Metabolic plasticity and mitochondrial dynamics in the pulmonary circulation and right ventricle in pulmonary arterial hypertension. Circulation, 131(19), 1691–1702. doi: 10.1161/CIRCULATIONAHA.114.006979.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ryan, J. J., & Archer, S. L. (2014). The right ventricle in pulmonary arterial hypertension: Disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circulation Research, 115(1), 176–188. doi: 10.1161/CIRCRESAHA.113.301129.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Harrison, A., Hatton, N., & Ryan, J. J. (2015). The right ventricle under pressure: Evaluating the adaptive and maladaptive changes in the right ventricle in pulmonary arterial hypertension using echocardiography (2013 Grover conference series). Pulmonary Circulation, 5(1), 29–47. doi: 10.1086/679699.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Voelkel, N. F., Bogaard, H. J., Al Husseini, A., Farkas, L., Gomez-Arroyo, J., & Natarajan, R. (2013). Antioxidants for the treatment of patients with severe angioproliferative pulmonary hypertension? Antioxidants & Redox Signaling, 18(14), 1810–1817. doi: 10.1089/ars.2012.4828.CrossRefGoogle Scholar
  35. 35.
    Wong, C. M., Bansal, G., Pavlickova, L., Marcocci, L., & Suzuki, Y. J. (2013). Reactive oxygen species and antioxidants in pulmonary hypertension. Antioxidants & Redox Signaling, 18(14), 1789–1796. doi: 10.1089/ars.2012.4568.CrossRefGoogle Scholar
  36. 36.
    Ardalan, M. R., & Rafieian-Kopaei, M. (2014). Antioxidant supplementation in hypertension. Journal of Renal Injury Prevention, 3(2), 39–40. doi: 10.12861/jrip.2014.13.PubMedGoogle Scholar
  37. 37.
    Chaumais, M. C., Ranchoux, B., Montani, D., Dorfmuller, P., Tu, L., Lecerf, F., Raymond, N., Guignabert, C., Price, L., Simonneau, G., Cohen-Kaminsky, S., Humbert, M., & Perros, F. (2014). N-acetylcysteine improves established monocrotaline-induced pulmonary hypertension in rats. Respiratory Research, 15, 65. doi: 10.1186/1465-9921-15-65.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Chen, K. H., Chen, Y. J., Yang, C. H., Liu, K. W., Chang, J. L., Pan, S. F., Lin, T. B., & Chen, M. J. (2012). Attenuation of the extract from Moringa oleifera on monocrotaline-induced pulmonary hypertension in rats. The Chinese Journal of Physiology, 55(1), 22–30. doi: 10.4077/CJP.2012.AMM104.PubMedCrossRefGoogle Scholar
  39. 39.
    Rakotomalala, G., Agard, C., Tonnerre, P., Tesse, A., Derbre, S., Michalet, S., Hamzaoui, J., Rio, M., Cario-Toumaniantz, C., Richomme, P., Charreau, B., Loirand, G., & Pacaud, P. (2013). Extract from Mimosa pigra attenuates chronic experimental pulmonary hypertension. Journal of Ethnopharmacology, 148(1), 106–116. doi: 10.1016/j.jep.2013.03.075.PubMedCrossRefGoogle Scholar
  40. 40.
    Ahmadipour, B., Hassanpour, H., Asadi, E., Khajali, F., Rafiei, F., & Khajali, F. (2015). Kelussia odoratissima Mozzaf—A promising medicinal herb to prevent pulmonary hypertension in broiler chickens reared at high altitude. Journal of Ethnopharmacology, 159, 49–54. doi: 10.1016/j.jep.2014.10.043.PubMedCrossRefGoogle Scholar
  41. 41.
    Roleira, F. M., Tavares-da-Silva, E. J., Varela, C. L., Costa, S. C., Silva, T., Garrido, J., & Borges, F. (2015).Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chemistry, 183, 235–258. doi: 10.1016/j.foodchem.2015.03.039.PubMedCrossRefGoogle Scholar
  42. 42.
    Kosanovic, D., Tian, X., Pak, O., Lai, Y. J., Hsieh, Y. L., Seimetz, M., Weissmann, N., Schermuly, R. T., & Dahal, B. K. (2013). Rhodiola: An ordinary plant or a promising future therapy for pulmonary hypertension? A brief review. Pulmonary Circulation, 3(3), 499–506. doi: 10.1086/674303.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Azad, G. K., & Tomar, R. S. (2014). Ebselen, a promising antioxidant drug: Mechanisms of action and targets of biological pathways. Molecular Biology Reports, 41(8), 4865–4879. doi: 10.1007/s11033-014-3417-x.PubMedCrossRefGoogle Scholar
  44. 44.
    Kamezaki, F., Tasaki, H., Yamashita, K., Tsutsui, M., Koide, S., Nakata, S., Tanimoto, A., Okazaki, M., Sasaguri, Y., Adachi, T., & Otsuji, Y. (2008). Gene transfer of extracellular superoxide dismutase ameliorates pulmonary hypertension in rats. American Journal of Respiratory and Critical Care Medicine, 177(2), 219–226. doi: 10.1164/rccm.200702-264OC.PubMedCrossRefGoogle Scholar
  45. 45.
    McLendon, J. M., Joshi, S. R., Sparks, J., Matar, M., Fewell, J. G., Abe, K., Oka, M., McMurtry, I. F., & Gerthoffer, W. T. (2015). Lipid nanoparticle delivery of a microRNA-145 inhibitor improves experimental pulmonary hypertension. Journal of Controlled Release, 210, 67–75. doi: 10.1016/j.jconrel.2015.05.261.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Niu, J., Wang, K., & Kolattukudy, P. E. (2011). Cerium oxide nanoparticles inhibit oxidative stress and nuclear factor-kappaB activation in H9c2 cardiomyocytes exposed to cigarette smoke extract. The Journal of Pharmacology and Experimental Therapeutics, 338(1), 53–61. doi: 10.1124/jpet.111.179978.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Spivak, M. Y., Bubnov, R. V., Yemets, I. M., Lazarenko, L. M., Tymoshok, N. O., & Ulberg, Z. R. (2013). Development and testing of gold nanoparticles for drug delivery and treatment of heart failure: A theranostic potential for PPP cardiology. The EPMA Journal, 4(1), 20. doi: 10.1186/1878-5085-4-20.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Lee, D., Bae, S., Hong, D., Lim, H., Yoon, J. H., Hwang, O., Park, S., Ke, Q., Khang, G., & Kang, P. M. (2013). H2O2-responsive molecularly engineered polymer nanoparticles as ischemia/reperfusion-targeted nanotherapeutic agents. Scientific Reports, 3, 2233. doi: 10.1038/srep02233.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Shukia, R., Sharma, S. B., Puri, D., Prabhu, K. M., & Murthy, P. S. (2000). Medicinal plants for treatment of diabetes mellitus. Indian Journal of Clinical Biochemistry, 15(Suppl 1), 169–177. doi: 10.1007/BF02867556.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Eddouks, M., Maghrani, M., Lemhadri, A., Ouahidi, M. L., & Jouad, H. (2002). Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). Journal of Ethnopharmacology, 82(2–3), 97–103.PubMedCrossRefGoogle Scholar
  51. 51.
    Eddouks, M., Chattopadhyay, D., De Feo, V., & Cho, W. C. (2014). Medicinal plants in the prevention and treatment of chronic diseases 2013. Evidence-based Complementary and Alternative Medicine, 2014, 180981. doi: 10.1155/2014/180981.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Vasanthi, H. R., ShriShriMal, N., & Das, D. K. (2012). Phytochemicals from plants to combat cardiovascular disease. Current Medicinal Chemistry, 19(14), 2242–2251.PubMedCrossRefGoogle Scholar
  53. 53.
    Huisamen, B., George, C., Dietrich, D., & Genade, S. (2013). Cardioprotective and anti-hypertensive effects of Prosopis glandulosa in rat models of pre-diabetes. Cardiovascular Journal of Africa, 24(2), 10–16. doi: 10.5830/CVJA-2012-069.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    George, C., Lochner, A., & Huisamen, B. (2011). The efficacy of Prosopis glandulosa as antidiabetic treatment in rat models of diabetes and insulin resistance. Journal of Ethnopharmacology, 137(1), 298–304. doi: 10.1016/j.jep.2011.05.023.PubMedCrossRefGoogle Scholar
  55. 55.
    George, C., Smith, C., Isaacs, A. W., & Huisamen, B. (2015). Chronic Prosopis glandulosa treatment blunts neutrophil infiltration and enhances muscle repair after contusion injury. Nutrients, 7(2), 815–830. doi: 10.3390/nu7020815.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Musabayane, C. T. (2012). The effects of medicinal plants on renal function and blood pressure in diabetes mellitus. Cardiovascular Journal of Africa, 23(8), 462–468. doi: 10.5830/CVJA-2012-025.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Madlala, H. P., Van Heerden, F. R., Mubagwa, K., & Musabayane, C. T. (2015). Changes in renal function and oxidative status associated with the hypotensive effects of oleanolic acid and related synthetic derivatives in experimental animals. PloS One, 10(6), e0128192. doi: 10.1371/journal.pone.0128192.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Zaidi, S. F., Muhammad, J. S., Shahryar, S., Usmanghani, K., Gilani, A. H., Jafri, W., & Sugiyama, T. (2012). Anti-inflammatory and cytoprotective effects of selected Pakistani medicinal plants in helicobacter pylori-infected gastric epithelial cells. Journal of Ethnopharmacology, 141(1), 403–410. doi: 10.1016/j.jep.2012.03.001.PubMedCrossRefGoogle Scholar
  59. 59.
    Duval, F., Moreno-Cuevas, J. E., Gonzalez-Garza, M. T., Rodriguez-Montalvo, C., & Cruz-Vega, D. E. (2014). Liver fibrosis and protection mechanisms action of medicinal plants targeting apoptosis of hepatocytes and hepatic stellate cells. Advances in Pharmacological Sciences, 2014, 373295. doi: 10.1155/2014/373295.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ghoneim, A. I. (2009). Effects of curcumin on ethanol-induced hepatocyte necrosis and apoptosis: Implication of lipid peroxidation and cytochrome c. Naunyn-Schmiedeberg's Archives of Pharmacology, 379(1), 47–60. doi: 10.1007/s00210-008-0335-2.PubMedCrossRefGoogle Scholar
  61. 61.
    Strange, G., Gabbay, E., Kermeen, F., Williams, T., Carrington, M., Stewart, S., & Keogh, A. (2013). Time from symptoms to definitive diagnosis of idiopathic pulmonary arterial hypertension: The delay study. Pulmonary Circulation, 3(1), 89–94. doi: 10.4103/2045-8932.109919.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lau, E. M., Tamura, Y., McGoon, M. D., & Sitbon, O. (2015). The 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: A practical chronicle of progress. The European Respiratory Journal, 46(4), 879–882. doi: 10.1183/13993003.01177-2015.PubMedCrossRefGoogle Scholar
  63. 63.
    Galie, N., Humbert, M., Vachiery, J. L., Gibbs, S., Lang, I., Torbicki, A., Simonneau, G., Peacock, A., Vonk Noordegraaf, A., Beghetti, M., Ghofrani, A., Gomez Sanchez, M. A., Hansmann, G., Klepetko, W., Lancellotti, P., Matucci, M., McDonagh, T., Pierard, L. A., Trindade, P. T., Zompatori, M., & Hoeper, M. (2015). 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). The European Respiratory Journal, 46(4), 903–975. doi: 10.1183/13993003.01032-2015.PubMedCrossRefGoogle Scholar
  64. 64.
    Haeck, M. L., & Vliegen, H. W. (2015). Diagnosis and treatment of pulmonary hypertension. Heart, 101(4), 311–319. doi: 10.1136/heartjnl-2011-301386.PubMedCrossRefGoogle Scholar
  65. 65.
    Grosvenor, P. W., Supriono, A., & Gray, D. O. (1995). Medicinal plants from Riau province, Sumatra, Indonesia. Part 2: Antibacterial and antifungal activity. Journal of Ethnopharmacology, 45(2), 97–111.PubMedCrossRefGoogle Scholar
  66. 66.
    Grosvenor, P. W., Gothard, P. K., McWilliam, N. C., Supriono, A., & Gray, D. O. (1995). Medicinal plants from Riau province, Sumatra, Indonesia. Part 1: Uses. Journal of Ethnopharmacology, 45(2), 75–95.PubMedCrossRefGoogle Scholar
  67. 67.
    Rosado-Vallado, M., Brito-Loeza, W., Mena-Rejon, G. J., Quintero-Marmol, E., & Flores-Guido, J. S. (2000). Antimicrobial activity of Fabaceae species used in Yucatan traditional medicine. Fitoterapia, 71(5), 570–573.PubMedCrossRefGoogle Scholar
  68. 68.
    Rabbani, M., Sajjadi, S. E., & Sadeghi, M. (2011). Chemical composition of the essential oil from kelussia odoratissima Mozaff. and the evaluation of its sedative and anxiolytic effects in mice. Clinics (Sao Paulo), 66(5), 843–848.CrossRefGoogle Scholar
  69. 69.
    Lu, Q., Qiu, T. Q., & Yang, H. (2006). Ligustilide inhibits vascular smooth muscle cells proliferation. European Journal of Pharmacology, 542(1–3), 136–140. doi: 10.1016/j.ejphar.2006.04.023.PubMedCrossRefGoogle Scholar
  70. 70.
    Kuang, X., Du, J. R., Liu, Y. X., Zhang, G. Y., & Peng, H. Y. (2008). Postischemic administration of Z-Ligustilide ameliorates cognitive dysfunction and brain damage induced by permanent forebrain ischemia in rats. Pharmacology, Biochemistry, and Behavior, 88(3), 213–221. doi: 10.1016/j.pbb.2007.08.006.PubMedCrossRefGoogle Scholar
  71. 71.
    Shevtsov, V. A., Zholus, B. I., Shervarly, V. I., Vol'skij, V. B., Korovin, Y. P., Khristich, M. P., Roslyakova, N. A., & Wikman, G. (2003). A randomized trial of two different doses of a SHR-5 Rhodiola rosea extract versus placebo and control of capacity for mental work. Phytomedicine, 10(2–3), 95–105. doi: 10.1078/094471103321659780.PubMedCrossRefGoogle Scholar
  72. 72.
    Yan, X., Wang, Y., Guo, S., & Shang, X. (2004). [Seasonal variations in biomass and salidroside content in roots of Rhodiola sachalinensis as affected by gauze and red film shading]. Ying Yong Sheng Tai Xue Bao, 15(3), 382–386.Google Scholar
  73. 73.
    Seo, W. G., Pae, H. O., Oh, G. S., Kim, N. Y., Kwon, T. O., Shin, M. K., Chai, K. Y., & Chung, H. T. (2001). The aqueous extract of Rhodiola sachalinensis root enhances the expression of inducible nitric oxide synthase gene in RAW264.7 macrophages. Journal of Ethnopharmacology, 76(1), 119–123.PubMedCrossRefGoogle Scholar
  74. 74.
    Lee, M. W., Lee, Y. A., Park, H. M., Toh, S. H., Lee, E. J., Jang, H. D., & Kim, Y. H. (2000). Antioxidative phenolic compounds from the roots of Rhodiola sachalinensis A. Bor. Archives of Pharmacal Research, 23(5), 455–458.PubMedCrossRefGoogle Scholar
  75. 75.
    Choe, K. I., Kwon, J. H., Park, K. H., Oh, M. H., Kim, M. H., Kim, H. H., Cho, S. H., Chung, E. K., Ha, S. Y., & Lee, M. W. (2012). The antioxidant and anti-inflammatory effects of phenolic compounds isolated from the root of Rhodiola sachalinensis A. BOR. Molecules, 17(10), 11484–11494. doi: 10.3390/molecules171011484.PubMedCrossRefGoogle Scholar
  76. 76.
    Bai, M. K., Guo, Y., Bian, B. D., Dong, H., Wang, T., Luo, F., Wen, F. Q., & Cui, C. Y. (2011). [Integripetal rhodiola herb attenuates high altitude-induced pulmonary arterial remodeling and expression of vascular endothelial growth factor in rats]. Sheng Li Xue Bao, 63(2), 143–148.Google Scholar
  77. 77.
    Balentine, D. A., Albano, M. C., & Nair, M. G. (1999). Role of medicinal plants, herbs, and spices in protecting human health. Nutrition Reviews, 57(9 Pt 2), S41–S45.PubMedGoogle Scholar
  78. 78.
    Sen, T., & Samanta, S. K. (2015). Medicinal plants, human health and biodiversity: A broad review. Advances in Biochemical Engineering/Biotechnology, 147, 59–110. doi: 10.1007/10_2014_273.PubMedCrossRefGoogle Scholar
  79. 79.
    Briskin, D. P. (2000). Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiology, 124(2), 507–514.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kitula, R. A. (2007). Use of medicinal plants for human health in Udzungwa Mountains Forests: A case study of New Dabaga Ulongambi Forest Reserve, Tanzania. Journal of Ethnobiology and Ethnomedicine, 3, 7. doi: 10.1186/1746-4269-3-7.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Zank, S., Peroni, N., de Araujo, E. L., & Hanazaki, N. (2015). Local health practices and the knowledge of medicinal plants in a Brazilian semi-arid region: Environmental benefits to human health. Journal of Ethnobiology and Ethnomedicine, 11, 11. doi: 10.1186/1746-4269-11-11.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Csiszar, A., Labinskyy, N., Olson, S., Pinto, J. T., Gupte, S., Wu, J. M., Hu, F., Ballabh, P., Podlutsky, A., Losonczy, G., de Cabo, R., Mathew, R., Wolin, M. S., & Ungvari, Z. (2009). Resveratrol prevents monocrotaline-induced pulmonary hypertension in rats. Hypertension, 54(3), 668–675. doi: 10.1161/HYPERTENSIONAHA.109.133397.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Raj, P., Louis, X. L., Thandapilly, S. J., Movahed, A., Zieroth, S., & Netticadan, T. (2014). Potential of resveratrol in the treatment of heart failure. Life Sciences, 95(2), 63–71. doi: 10.1016/j.lfs.2013.12.011.PubMedCrossRefGoogle Scholar
  84. 84.
    Sahebkar, A. (2013). Effects of resveratrol supplementation on plasma lipids: A systematic review and meta-analysis of randomized controlled trials. Nutrition Reviews, 71(12), 822–835. doi: 10.1111/nure.12081.PubMedCrossRefGoogle Scholar
  85. 85.
    Yang, D. L., Zhang, H. G., Xu, Y. L., Gao, Y. H., Yang, X. J., Hao, X. Q., & Li, X. H. (2010). Resveratrol inhibits right ventricular hypertrophy induced by monocrotaline in rats. Clinical and Experimental Pharmacology & Physiology, 37(2), 150–155. doi: 10.1111/j.1440-1681.2009.05231.x.CrossRefGoogle Scholar
  86. 86.
    Paffett, M. L., Lucas, S. N., & Campen, M. J. (2012). Resveratrol reverses monocrotaline-induced pulmonary vascular and cardiac dysfunction: A potential role for atrogin-1 in smooth muscle. Vascular Pharmacology, 56(1–2), 64–73. doi: 10.1016/j.vph.2011.11.002.PubMedCrossRefGoogle Scholar
  87. 87.
    Tome-Carneiro, J., Gonzalvez, M., Larrosa, M., Yanez-Gascon, M. J., Garcia-Almagro, F. J., Ruiz-Ros, J. A., Tomas-Barberan, F. A., Garcia-Conesa, M. T., & Espin, J. C. (2013). Resveratrol in primary and secondary prevention of cardiovascular disease: A dietary and clinical perspective. Annals of the New York Academy of Sciences, 1290, 37–51. doi: 10.1111/nyas.12150.PubMedCrossRefGoogle Scholar
  88. 88.
    Liu, Y., Ma, W., Zhang, P., He, S., & Huang, D. (2015). Effect of resveratrol on blood pressure: A meta-analysis of randomized controlled trials. Clinical Nutrition, 34(1), 27–34. doi: 10.1016/j.clnu.2014.03.009.PubMedCrossRefGoogle Scholar
  89. 89.
    Samuni, Y., Goldstein, S., Dean, O. M., & Berk, M. (2013). The chemistry and biological activities of N-acetylcysteine. Biochimica et Biophysica Acta, 1830(8), 4117–4129. doi: 10.1016/j.bbagen.2013.04.016.PubMedCrossRefGoogle Scholar
  90. 90.
    Idiopathic Pulmonary Fibrosis Clinical Research Network, Martinez, F. J., de Andrade, J. A., Anstrom, K. J., King, T. E., Jr., & Raghu, G. (2014). Randomized trial of acetylcysteine in idiopathic pulmonary fibrosis. The New England Journal of Medicine, 370(22), 2093–2101. doi: 10.1056/NEJMoa1401739.CrossRefGoogle Scholar
  91. 91.
    Demedts, M., Behr, J., Buhl, R., Costabel, U., Dekhuijzen, R., Jansen, H. M., MacNee, W., Thomeer, M., Wallaert, B., Laurent, F., Nicholson, A. G., Verbeken, E. K., Verschakelen, J., Flower, C. D., Capron, F., Petruzzelli, S., De Vuyst, P., van den Bosch, J. M., Rodriguez-Becerra, E., Corvasce, G., Lankhorst, I., Sardina, M., Montanari, M., & IFIGENIA Study Group. (2005). High-dose acetylcysteine in idiopathic pulmonary fibrosis. The New England Journal of Medicine, 353(21), 2229–2242. doi: 10.1056/NEJMoa042976.PubMedCrossRefGoogle Scholar
  92. 92.
    Inci, I., Zhai, W., Arni, S., Hillinger, S., Vogt, P., & Weder, W. (2007). N-acetylcysteine attenuates lung ischemia-reperfusion injury after lung transplantation. The Annals of Thoracic Surgery, 84(1), 240–246.; Discussion 6. doi: 10.1016/j.athoracsur.2007.03.082.PubMedCrossRefGoogle Scholar
  93. 93.
    Mahmoud, K. M., & Ammar, A. S. (2011). Effect of N-acetylcysteine on cardiac injury and oxidative stress after abdominal aortic aneurysm repair: A randomized controlled trial. Acta Anaesthesiologica Scandinavica, 55(8), 1015–1021. doi: 10.1111/j.1399-6576.2011.02492.x.PubMedCrossRefGoogle Scholar
  94. 94.
    Amrouche-Mekkioui, I., & Djerdjouri, B. (2012). N-acetylcysteine improves redox status, mitochondrial dysfunction, mucin-depleted crypts and epithelial hyperplasia in dextran sulfate sodium-induced oxidative colitis in mice. European Journal of Pharmacology, 691(1–3), 209–217. doi: 10.1016/j.ejphar.2012.06.014.PubMedCrossRefGoogle Scholar
  95. 95.
    Ohnishi, T., Bandow, K., Kakimoto, K., Kusuyama, J., & Matsuguchi, T. (2014). Long-time treatment by low-dose N-acetyl-L-cysteine enhances proinflammatory cytokine expressions in LPS-stimulated macrophages. PloS One, 9(2), e87229. doi: 10.1371/journal.pone.0087229.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Wang, H. W., Yang, W., Lu, J. Y., Li, F., Sun, J. Z., Zhang, W., Guo, N. N., Gao, L., & Kang, J. R. (2013). N-acetylcysteine administration is associated with reduced activation of NF-kB and preserves lung dendritic cells function in a zymosan-induced generalized inflammation model. Journal of Clinical Immunology, 33(3), 649–660. doi: 10.1007/s10875-012-9852-3.PubMedCrossRefGoogle Scholar
  97. 97.
    Lee, J. H., Jo, Y. H., Kim, K., Lee, J. H., Rim, K. P., Kwon, W. Y., Suh, G. J., & Rhee, J. E. (2013). Effect of N-acetylcysteine (NAC) on acute lung injury and acute kidney injury in hemorrhagic shock. Resuscitation, 84(1), 121–127. doi: 10.1016/j.resuscitation.2012.05.017.PubMedCrossRefGoogle Scholar
  98. 98.
    Cortijo, J., Cerda-Nicolas, M., Serrano, A., Bioque, G., Estrela, J. M., Santangelo, F., Esteras, A., Llombart-Bosch, A., & Morcillo, E. J. (2001). Attenuation by oral N-acetylcysteine of bleomycin-induced lung injury in rats. The European Respiratory Journal, 17(6), 1228–1235.PubMedCrossRefGoogle Scholar
  99. 99.
    Haleagrahara, N., Julian, V., & Chakravarthi, S. (2011). N-acetylcysteine offers cardioprotection by decreasing cardiac lipid hydroperoxides and 8-isoprostane level in isoproterenol-induced cardiotoxicity in rats. Cardiovascular Toxicology, 11(4), 373–381. doi: 10.1007/s12012-011-9132-0.PubMedCrossRefGoogle Scholar
  100. 100.
    Mokra, D., Drgova, A., Petras, M., Mokry, J., Antosova, M., & Calkovska, A. (2015). N-acetylcysteine alleviates the meconium-induced acute lung injury. Advances in Experimental Medicine and Biology, 832, 59–67. doi: 10.1007/5584_2014_7.PubMedCrossRefGoogle Scholar
  101. 101.
    Ghanizadeh, A., & Moghimi-Sarani, E. (2013). A randomized double blind placebo controlled clinical trial of N-acetylcysteine added to risperidone for treating autistic disorders. BMC Psychiatry, 13, 196. doi: 10.1186/1471-244X-13-196.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Deepmala, Slattery, J., Kumar, N., Delhey, L., Berk, M., Dean, O., Spielholz, C., & Frye, R. (2015). Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review. Neuroscience & Biobehavioral Reviews, 55, 294–321. doi: 10.1016/j.neubiorev.2015.04.015.
  103. 103.
    Zheng, J. P., Wen, F. Q., Bai, C. X., Wan, H. Y., Kang, J., Chen, P., Yao, W. Z., Ma, L. J., Li, X., Raiteri, L., Sardina, M., Gao, Y., Wang, B. S., Zhong, N. S., & PANTHEON study group. (2014). Twice daily N-acetylcysteine 600 mg for exacerbations of chronic obstructive pulmonary disease (PANTHEON): A randomised, double-blind placebo-controlled trial. The Lancet Respiratory Medicine, 2(3), 187–194. doi: 10.1016/S2213-2600(13)70286-8.PubMedCrossRefGoogle Scholar
  104. 104.
    Covvey, J. R., & Mancl, E. E. (2014). Recent evidence for pharmacological treatment of idiopathic pulmonary fibrosis. The Annals of Pharmacotherapy, 48(12), 1611–1619. doi: 10.1177/1060028014551015.PubMedCrossRefGoogle Scholar
  105. 105.
    Spagnolo, P., Wells, A. U., & Collard, H. R. (2015). Pharmacological treatment of idiopathic pulmonary fibrosis: An update. Drug Discovery Today, 20(5), 514–524. doi: 10.1016/j.drudis.2015.01.001.PubMedCrossRefGoogle Scholar
  106. 106.
    Reiter, R. J., Manchester, L. C., Fuentes-Broto, L., & Tan, D. X. (2010). Cardiac hypertrophy and remodelling: Pathophysiological consequences and protective effects of melatonin. Journal of Hypertension, 28(Suppl 1), S7–12. doi: 10.1097/01.hjh.0000388488.51083.2b.PubMedCrossRefGoogle Scholar
  107. 107.
    Reiter, R. J., Tan, D. X., & Fuentes-Broto, L. (2010). Melatonin: A multitasking molecule. Progress in Brain Research, 181, 127–151. doi: 10.1016/S0079-6123(08)81008-4. S0079-6123(08)81008-4 [pii].PubMedCrossRefGoogle Scholar
  108. 108.
    Reiter, R. J., Tan, D. X., Paredes, S. D., & Fuentes-Broto, L. (2010). Beneficial effects of melatonin in cardiovascular disease. Annals of Medicine, 42(4), 276–285. doi: 10.3109/07853890903485748.PubMedCrossRefGoogle Scholar
  109. 109.
    Boutin, J. A., Audinot, V., Ferry, G., & Delagrange, P. (2005). Molecular tools to study melatonin pathways and actions. Trends in Pharmacological Sciences, 26(8), 412–419. doi: 10.1016/ Scholar
  110. 110.
    Konturek, S. J., Konturek, P. C., Brzozowski, T., & Bubenik, G. A. (2007). Role of melatonin in upper gastrointestinal tract. Journal of Physiology and Pharmacology, 58(Suppl 6), 23–52.PubMedGoogle Scholar
  111. 111.
    Yorgancioglu, A., Cruz, A. A., Bousquet, J., Khaltaev, N., Mendis, S., Chuchalin, A., Bateman, E. D., Camargos, P., Chavannes, N. H., Bai, C., Deleanu, D., Kolek, V., Kuna, P., Laurendi, G., Masjedi, M. R., Mele, S., Mihaltan, F., Pinto, J. R., Samolinski, B., Scalera, G., Sooronbaev, T., Tageldin, M. A., Tuyetlan le, T., Yusuf, O., Akdis, C., Baigenzhin, A., Cagnani, C. B., Fletcher, M., Gemicioglu, B., Muhammed, Y., Sagra, H., To, T., & Wagner, A. H. (2014). The Global Alliance against Respiratory Diseases (GARD) country report. Primary Care Respiratory Journal, 23(1), 98–101. doi: 10.4104/pcrj.2014.00014.PubMedCrossRefGoogle Scholar
  112. 112.
    Reiter, R. J., Tan, D. X., Mayo, J. C., Sainz, R. M., Leon, J., & Czarnocki, Z. (2003). Melatonin as an antioxidant: Biochemical mechanisms and pathophysiological implications in humans. Acta Biochimica Polonica, 50(4), 1129–1146. doi:0350041129.PubMedGoogle Scholar
  113. 113.
    Pieri, C., Marra, M., Moroni, F., Recchioni, R., & Marcheselli, F. (1994). Melatonin: A peroxyl radical scavenger more effective than vitamin E. Life Sciences, 55(15), PL271–PL276.PubMedCrossRefGoogle Scholar
  114. 114.
    Marchiafava, P. L., & Longoni, B. (1999). Melatonin as an antioxidant in retinal photoreceptors. Journal of Pineal Research, 26(3), 184–189.PubMedCrossRefGoogle Scholar
  115. 115.
    Rezzani, R., Rodella, L. F., Fraschini, F., Gasco, M. R., Demartini, G., Musicanti, C., & Reiter, R. J. (2009). Melatonin delivery in solid lipid nanoparticles: Prevention of cyclosporine A induced cardiac damage. Journal of Pineal Research, 46(3), 255–261. doi: 10.1111/j.1600-079X.2008.00651.x.PubMedCrossRefGoogle Scholar
  116. 116.
    Scheer, F. A., Van Montfrans, G. A., van Someren, E. J., Mairuhu, G., & Buijs, R. M. (2004). Daily nighttime melatonin reduces blood pressure in male patients with essential hypertension. Hypertension, 43(2), 192–197. doi: 10.1161/01.HYP.0000113293.15186.3b.PubMedCrossRefGoogle Scholar
  117. 117.
    Grossman, E., Laudon, M., Yalcin, R., Zengil, H., Peleg, E., Sharabi, Y., Kamari, Y., Shen-Orr, Z., & Zisapel, N. (2006). Melatonin reduces night blood pressure in patients with nocturnal hypertension. The American Journal of Medicine, 119(10), 898–902. doi: 10.1016/j.amjmed.2006.02.002.PubMedCrossRefGoogle Scholar
  118. 118.
    Reiter, R. J., Tan, D. X., & Galano, A. (2014). Melatonin: Exceeding expectations. Physiology (Bethesda, MD.), 29(5), 325–333. doi: 10.1152/physiol.00011.2014.Google Scholar
  119. 119.
    Piechota, A., Lipinska, S., Szemraj, J., & Goraca, A. (2010). Long-term melatonin administration enhances the antioxidant potential of human plasma maintained after discontinuation of the treatment. General Physiology and Biophysics, 29(2), 144–150.PubMedCrossRefGoogle Scholar
  120. 120.
    Cagnacci, A., Cannoletta, M., Renzi, A., Baldassari, F., Arangino, S., & Volpe, A. (2005). Prolonged melatonin administration decreases nocturnal blood pressure in women. American Journal of Hypertension, 18(12 Pt 1), 1614–1618. doi: 10.1016/j.amjhyper.2005.05.008.PubMedCrossRefGoogle Scholar
  121. 121.
    Mansoor, G. A. (2002). Ambulatory blood pressure monitoring in clinical trials in adults and children. American Journal of Hypertension, 15(2 Pt 2), 38S–42S.PubMedCrossRefGoogle Scholar
  122. 122.
    de Matos Cavalcante, A. G., de Bruin, P. F., de Bruin, V. M., Nunes, D. M., Pereira, E. D., Cavalcante, M. M., & Andrade, G. M. (2012). Melatonin reduces lung oxidative stress in patients with chronic obstructive pulmonary disease: A randomized, double-blind, placebo-controlled study. Journal of Pineal Research, 53(3), 238–244. doi: 10.1111/j.1600-079X.2012.00992.x.PubMedCrossRefGoogle Scholar
  123. 123.
    Das, R., Balonan, L., Ballard, H. J., & Ho, S. (2008). Chronic hypoxia inhibits the antihypertensive effect of melatonin on pulmonary artery. International Journal of Cardiology, 126(3), 340–345. doi: 10.1016/j.ijcard.2007.04.030.PubMedCrossRefGoogle Scholar
  124. 124.
    Jin, H., Wang, Y., Zhou, L., Liu, L., Zhang, P., Deng, W., & Yuan, Y. (2014). Melatonin attenuates hypoxic pulmonary hypertension by inhibiting the inflammation and the proliferation of pulmonary arterial smooth muscle cells. Journal of Pineal Research, 57(4), 442–450. doi: 10.1111/jpi.12184.PubMedCrossRefGoogle Scholar
  125. 125.
    Calbet, J. A. (2003). Chronic hypoxia increases blood pressure and noradrenaline spillover in healthy humans. The Journal of Physiology, 551(Pt 1), 379–386. doi: 10.1113/jphysiol.2003.045112.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Mirrakhimov, A. E., & Strohl, K. P. (2016). High-altitude pulmonary hypertension: An update on disease pathogenesis and management. Open Cardiovascular Medicine Journal, 10, 19–27. doi: 10.2174/1874192401610010019.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Giussani, D. A., & Davidge, S. T. (2013). Developmental programming of cardiovascular disease by prenatal hypoxia. Journal of Developmental Origins of Health and Disease, 4(5), 328–337. doi: 10.1017/S204017441300010X.PubMedCrossRefGoogle Scholar
  128. 128.
    Niermeyer, S., Andrade Mollinedo, P., & Huicho, L. (2009). Child health and living at high altitude. Archives of Disease in Childhood, 94(10), 806–811. doi: 10.1136/adc.2008.141838.PubMedCrossRefGoogle Scholar
  129. 129.
    Torres, F., Gonzalez-Candia, A., Montt, C., Ebensperger, G., Chubretovic, M., Seron-Ferre, M., Reyes, R. V., Llanos, A. J., & Herrera, E. A. (2015). Melatonin reduces oxidative stress and improves vascular function in pulmonary hypertensive newborn sheep. Journal of Pineal Research. doi: 10.1111/jpi.12222.
  130. 130.
    Thakor, A. S., Allison, B. J., Niu, Y., Botting, K. J., Seron-Ferre, M., Herrera, E. A., & Giussani, D. A. (2015). Melatonin modulates the fetal cardiovascular defense response to acute hypoxia. Journal of Pineal Research. doi: 10.1111/jpi.12242.
  131. 131.
    Maarman, G., Blackhurst, D., Thienemann, F., Blauwet, L., Butrous, G., Davies, N., Sliwa, K., & Lecour, S. (2015). Melatonin as a preventive and curative therapy against pulmonary hypertension. Journal of Pineal Research, 59(3), 343–353. doi: 10.1111/jpi.12263.PubMedCrossRefGoogle Scholar
  132. 132.
    Tan, D. X., Poeggeler, B., Reiter, R. J., Chen, L. D., Chen, S., Manchester, L. C., & Barlow-Walden, L. R. (1993). The pineal hormone melatonin inhibits DNA-adduct formation induced by the chemical carcinogen safrole in vivo. Cancer Letters, 70(1–2), 65–71.PubMedCrossRefGoogle Scholar
  133. 133.
    Stasica, P., Paneth, P., & Rosiak, J. M. (2000). Hydroxyl radical reaction with melatonin molecule: A computational study. Journal of Pineal Research, 29(2), 125–127.PubMedCrossRefGoogle Scholar
  134. 134.
    Tan, D. X., Manchester, L. C., Reiter, R. J., Plummer, B. F., Limson, J., Weintraub, S. T., & Qi, W. (2000). Melatonin directly scavenges hydrogen peroxide: A potentially new metabolic pathway of melatonin biotransformation. Free Radical Biology & Medicine, 29(11), 1177–1185.CrossRefGoogle Scholar
  135. 135.
    Tengattini, S., Reiter, R. J., Tan, D. X., Terron, M. P., Rodella, L. F., & Rezzani, R. (2008). Cardiovascular diseases: Protective effects of melatonin. Journal of Pineal Research, 44(1), 16–25. doi: 10.1111/j.1600-079X.2007.00518.x.PubMedGoogle Scholar
  136. 136.
    Tan, D. X., Zanghi, B. M., Manchester, L. C., & Reiter, R. J. (2014). Melatonin identified in meats and other food stuffs: Potentially nutritional impact. Journal of Pineal Research, 57(2), 213–218. doi: 10.1111/jpi.12152.PubMedCrossRefGoogle Scholar
  137. 137.
    Santibanez, J. F., Quintanilla, M., & Bernabeu, C. (2011). TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions. Clinical Science (London, England), 121(6), 233–251. doi: 10.1042/CS20110086.CrossRefGoogle Scholar
  138. 138.
    Ramos, M. F., Lame, M. W., Segall, H. J., & Wilson, D. W. (2008). Smad signaling in the rat model of monocrotaline pulmonary hypertension. Toxicologic Pathology, 36(2), 311–320. doi: 10.1177/0192623307311402.PubMedCrossRefGoogle Scholar
  139. 139.
    Zaiman, A. L., Podowski, M., Medicherla, S., Gordy, K., Xu, F., Zhen, L., Shimoda, L. A., Neptune, E., Higgins, L., Murphy, A., Chakravarty, S., Protter, A., Sehgal, P. B., Champion, H. C., & Tuder, R. M. (2008). Role of the TGF-beta/Alk5 signaling pathway in monocrotaline-induced pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine, 177(8), 896–905. doi: 10.1164/rccm.200707-1083OC.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Zakrzewicz, A., Kouri, F. M., Nejman, B., Kwapiszewska, G., Hecker, M., Sandu, R., Dony, E., Seeger, W., Schermuly, R. T., Eickelberg, O., & Morty, R. E. (2007). The transforming growth factor-beta/Smad2,3 signalling axis is impaired in experimental pulmonary hypertension. The European Respiratory Journal, 29(6), 1094–1104. doi: 10.1183/09031936.00138206.PubMedCrossRefGoogle Scholar
  141. 141.
    Wang, H., Ji, R., Meng, J., Cui, Q., Zou, W., Li, L., Wang, G., Sun, L., Li, Z., Huo, L., Fan, Y., & Penny, D. J. (2014). Functional changes in pulmonary arterial endothelial cells associated with BMPR2 mutations. PloS One, 9(9), e106703. doi: 10.1371/journal.pone.0106703.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Bizzarri, M., Cucina, A., Valente, M. G., Tagliaferri, F., Borrelli, V., Stipa, F., & Cavallaro, A. (2003). Melatonin and vitamin D3 increase TGF-beta1 release and induce growth inhibition in breast cancer cell cultures. The Journal of Surgical Research, 110(2), 332–337.PubMedCrossRefGoogle Scholar
  143. 143.
    Nakamura, E., Otsuka, F., Terasaka, T., Inagaki, K., Hosoya, T., Tsukamoto-Yamauchi, N., Toma, K., & Makino, H. (2014). Melatonin counteracts BMP-6 regulation of steroidogenesis by rat granulosa cells. The Journal of Steroid Biochemistry and Molecular Biology, 143, 233–239. doi: 10.1016/j.jsbmb.2014.04.003.PubMedCrossRefGoogle Scholar
  144. 144.
    Tsukamoto, N., Otsuka, F., Ogura-Ochi, K., Inagaki, K., Nakamura, E., Toma, K., Terasaka, T., Iwasaki, Y., & Makino, H. (2013). Melatonin receptor activation suppresses adrenocorticotropin production via BMP-4 action by pituitary AtT20 cells. Molecular and Cellular Endocrinology, 375(1–2), 1–9. doi: 10.1016/j.mce.2013.05.010.PubMedCrossRefGoogle Scholar
  145. 145.
    Girouard, H., Chulak, C., Lejossec, M., Lamontagne, D., & de Champlain, J. (2001). Vasorelaxant effects of the chronic treatment with melatonin on mesenteric artery and aorta of spontaneously hypertensive rats. Journal of Hypertension, 19(8), 1369–1377.PubMedCrossRefGoogle Scholar
  146. 146.
    Cook, J. S., Sauder, C. L., & Ray, C. A. (2011). Melatonin differentially affects vascular blood flow in humans. American Journal of Physiology. Heart and Circulatory Physiology, 300(2), H670–H674. doi: 10.1152/ajpheart.00710.2010.PubMedCrossRefGoogle Scholar
  147. 147.
    Paulis, L., Vazan, R., Simko, F., Pechanova, O., Styk, J., Babal, P., & Janega, P. (2007). Morphological alterations and NO-synthase expression in the heart after continuous light exposure of rats. Physiological Research, 56(Suppl 2), S71–S76.PubMedGoogle Scholar
  148. 148.
    Tschudi, M. R., Mesaros, S., Luscher, T. F., & Malinski, T. (1996). Direct in situ measurement of nitric oxide in mesenteric resistance arteries. Increased decomposition by superoxide in hypertension. Hypertension, 27(1), 32–35.PubMedCrossRefGoogle Scholar
  149. 149.
    Schiffrin, E. L. (2008). Oxidative stress, nitric oxide synthase, and superoxide dismutase: A matter of imbalance underlies endothelial dysfunction in the human coronary circulation. Hypertension, 51(1), 31–32. doi: 10.1161/HYPERTENSIONAHA.107.103226.PubMedCrossRefGoogle Scholar
  150. 150.
    Watal, G., Watal, A., Rai, P. K., Rai, D. K., Sharma, G., & Sharma, B. (2013). Biomedical applications of nano-antioxidant. Methods in Molecular Biology, 1028, 147–151. doi: 10.1007/978-1-62703-475-3_9.PubMedCrossRefGoogle Scholar
  151. 151.
    Souto, E. B., Severino, P., Basso, R., & Santana, M. H. (2013). Encapsulation of antioxidants in gastrointestinal-resistant nanoparticulate carriers. Methods in Molecular Biology, 1028, 37–46. doi: 10.1007/978-1-62703-475-3_3.PubMedCrossRefGoogle Scholar
  152. 152.
    Russcher, M., Koch, B. C., Nagtegaal, J. E., van Ittersum, F. J., Pasker-de Jong, P. C., Hagen, E. C., van Dorp, W. T., Gabreels, B., Wildbergh, T. X., van der Westerlaken, M. M., Gaillard, C. A., & Ter Wee, P. M. (2013). Long-term effects of melatonin on quality of life and sleep in haemodialysis patients (Melody study): A randomized controlled trial. British Journal of Clinical Pharmacology, 76(5), 668–679. doi: 10.1111/bcp.12093.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Pandi-Perumal, S. R., Verster, J. C., Kayumov, L., Lowe, A. D., Santana, M. G., Pires, M. L., Tufik, S., & Mello, M. T. (2006). Sleep disorders, sleepiness and traffic safety: A public health menace. Brazilian Journal of Medical and Biological Research, 39(7), 863–871.PubMedCrossRefGoogle Scholar
  154. 154.
    Tan, D. X., Manchester, L. C., Reiter, R. J., Plummer, B. F., Hardies, L. J., Weintraub, S. T., Vijayalaxmi, Shepherd, A. M. (1998). A novel melatonin metabolite, cyclic 3-hydroxymelatonin: A biomarker of in vivo hydroxyl radical generation. Biochemical and Biophysical Research Communications, 253(3), 614–620.Google Scholar
  155. 155.
    Hardeland, R. (2005). Antioxidative protection by melatonin: Multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine, 27(2), 119–130.PubMedCrossRefGoogle Scholar
  156. 156.
    DeMuro, R. L., Nafziger, A. N., Blask, D. E., Menhinick, A. M., & Bertino, J. S., Jr. (2000). The absolute bioavailability of oral melatonin. Journal of Clinical Pharmacology, 40(7), 781–784.PubMedCrossRefGoogle Scholar
  157. 157.
    Waldhauser, F., Waldhauser, M., Lieberman, H. R., Deng, M. H., Lynch, H. J., & Wurtman, R. J. (1984). Bioavailability of oral melatonin in humans. Neuroendocrinology, 39(4), 307–313.PubMedCrossRefGoogle Scholar
  158. 158.
    Aldhous, M., Franey, C., Wright, J., & Arendt, J. (1985). Plasma concentrations of melatonin in man following oral absorption of different preparations. British Journal of Clinical Pharmacology, 19(4), 517–521.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Bartoli, A., De Gregori, S., Molinaro, M., Broglia, M., Tinelli, C., & Imberti, R. (2012). Bioavailability of a new oral spray melatonin emulsion compared with a standard oral formulation in healthy volunteers. Journal of Bioequivalence & Bioavailability, 4(7), 96–99. doi: 10.4172/jbb.1000120.Google Scholar
  160. 160.
    Mao, S., Chen, J., Wei, Z., Liu, H., & Bi, D. (2004). Intranasal administration of melatonin starch microspheres. International Journal of Pharmaceutics, 272(1–2), 37–43. doi: 10.1016/j.ijpharm.2003.11.028.PubMedCrossRefGoogle Scholar
  161. 161.
    Hickie, I. B., & Rogers, N. L. (2011). Novel melatonin-based therapies: Potential advances in the treatment of major depression. Lancet, 378(9791), 621–631. doi: 10.1016/S0140-6736(11)60095-0.PubMedCrossRefGoogle Scholar
  162. 162.
    Brioschi, A., Zara, G. P., Calderoni, S., Gasco, M. R., & Mauro, A. (2008). Cholesterylbutyrate solid lipid nanoparticles as a butyric acid prodrug. Molecules, 13(2), 230–254.PubMedCrossRefGoogle Scholar
  163. 163.
    Yun, X., Maximov, V. D., Yu, J., Zhu, H., Vertegel, A. A., & Kindy, M. S. (2013). Nanoparticles for targeted delivery of antioxidant enzymes to the brain after cerebral ischemia and reperfusion injury. Journal of Cerebral Blood Flow and Metabolism, 33(4), 583–592. doi: 10.1038/jcbfm.2012.209.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991–1003. doi: 10.1038/nmat3776.PubMedCrossRefGoogle Scholar
  165. 165.
    Onaca, O., Enea, R., Hughes, D. W., & Meier, W. (2009). Stimuli-responsive polymersomes as nanocarriers for drug and gene delivery. Macromolecular Bioscience, 9(2), 129–139. doi: 10.1002/mabi.200800248.PubMedCrossRefGoogle Scholar
  166. 166.
    Duzgunes, N. (2012). Nanomedicine cancer, diabetes, and cardiovascular, central nervous system, pulmonary and inflammatory diseases. Preface. Methods in Enzymology, 508, xix–xxi. doi: 10.1016/B978-0-12-391860-4.00027-6.PubMedCrossRefGoogle Scholar
  167. 167.
    Matoba, T., & Egashira, K. (2014). Nanoparticle-mediated drug delivery system for cardiovascular disease. International Heart Journal, 55(4), 281–286.PubMedCrossRefGoogle Scholar
  168. 168.
    Ferreira, M. P., Balasubramanian, V., Hirvonen, J., Ruskoaho, H., & Santos, H. A. (2015). Advanced nanomedicines for the treatment and diagnosis of myocardial infarction and heart failure. Current Drug Targets, 16(14), 1682–1697.PubMedCrossRefGoogle Scholar
  169. 169.
    Spivak, M. Y., Bubnov, R. V., Yemets, I. M., Lazarenko, L. M., Tymoshok, N. O., & Ulberg, Z. R. (2013). Gold nanoparticles—The theranostic challenge for PPPM: Nanocardiology application. The EPMA Journal, 4(1), 18. doi: 10.1186/1878-5085-4-18.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Paranjpe, M., & Muller-Goymann, C. C. (2014). Nanoparticle-mediated pulmonary drug delivery: A review. International Journal of Molecular Sciences, 15(4), 5852–5873. doi: 10.3390/ijms15045852.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Da Silva, A. L., Santos, R. S., Xisto, D. G., Alonso Sdel, V., Morales, M. M., & Rocco, P. R. (2013). Nanoparticle-based therapy for respiratory diseases. Anais da Academia Brasileira de Ciências, 85(1), 137–146.PubMedCrossRefGoogle Scholar
  172. 172.
    Priano, L., Esposti, D., Esposti, R., Castagna, G., De Medici, C., Fraschini, F., Gasco, M. R., & Mauro, A. (2007). Solid lipid nanoparticles incorporating melatonin as new model for sustained oral and transdermal delivery systems. Journal of Nanoscience and Nanotechnology, 7(10), 3596–3601.PubMedCrossRefGoogle Scholar
  173. 173.
    Singh, F., Charles, A. L., Schlagowski, A. I., Bouitbir, J., Bonifacio, A., Piquard, F., Krahenbuhl, S., Geny, B., & Zoll, J. (2015). Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis. Biochimica et Biophysica Acta, 1853(7), 1574–1585. doi: 10.1016/j.bbamcr.2015.03.006.PubMedCrossRefGoogle Scholar
  174. 174.
    Bouitbir, J., Charles, A. L., Echaniz-Laguna, A., Kindo, M., Daussin, F., Auwerx, J., Piquard, F., Geny, B., & Zoll, J. (2012). Opposite effects of statins on mitochondria of cardiac and skeletal muscles: A ‘mitohormesis’ mechanism involving reactive oxygen species and PGC-1. European Heart Journal, 33(11), 1397–1407. doi: 10.1093/eurheartj/ehr224.PubMedCrossRefGoogle Scholar
  175. 175.
    Sano, M., & Fukuda, K. (2008). Activation of mitochondrial biogenesis by hormesis. Circulation Research, 103(11), 1191–1193. doi: 10.1161/CIRCRESAHA.108.189092.PubMedCrossRefGoogle Scholar
  176. 176.
    Cornelius, C., Perrotta, R., Graziano, A., Calabrese, E. J., & Calabrese, V. (2013). Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: Mitochondria as a “chi”. Immunity & Ageing, 10(1), 15. doi: 10.1186/1742-4933-10-15.CrossRefGoogle Scholar
  177. 177.
    Calabrese, V., Cornelius, C., Dinkova-Kostova, A. T., Calabrese, E. J., & Mattson, M. P. (2010). Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxidants & Redox Signaling, 13(11), 1763–1811. doi: 10.1089/ars.2009.3074.CrossRefGoogle Scholar
  178. 178.
    Piantadosi, C. A., Carraway, M. S., Babiker, A., & Suliman, H. B. (2008). Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circulation Research, 103(11), 1232–1240. doi: 10.1161/ Scholar
  179. 179.
    Deora, A. A., Win, T., Vanhaesebroeck, B., & Lander, H. M. (1998). A redox-triggered ras-effector interaction. Recruitment of phosphatidylinositol 3′-kinase to Ras by redox stress. The Journal of Biological Chemistry, 273(45), 29923–29928.PubMedCrossRefGoogle Scholar
  180. 180.
    Reis, G. S., Augusto, V. S., Silveira, A. P., Jordao, A. A., Jr., Baddini-Martinez, J., Poli Neto, O., Rodrigues, A. J., & Evora, P. R. (2013). Oxidative-stress biomarkers in patients with pulmonary hypertension. Pulmonary Circulation, 3(4), 856–861. doi: 10.1086/674764.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Kryvenko, V. (2013). [Biomarkers of systemic inflammation, oxidative stress and their interactions in patients with combined flow of chronic obstructive pulmonary disease and arterial hypertension]. Georgian Medical News, (216), 23–28.Google Scholar
  182. 182.
    Vaidya, B., & Gupta, V. (2015). Novel therapeutic approaches for pulmonary arterial hypertension: Unique molecular targets to site-specific drug delivery. Journal of Controlled Release, 211, 118–133. doi: 10.1016/j.jconrel.2015.05.287.PubMedCrossRefGoogle Scholar
  183. 183.
    Bogaard, H. J., Abe, K., Vonk Noordegraaf, A., & Voelkel, N. F. (2009). The right ventricle under pressure: Cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest, 135(3), 794–804. doi: 10.1378/chest.08-0492.PubMedCrossRefGoogle Scholar
  184. 184.
    Csiszar, A., Labinskyy, N., Pinto, J. T., Ballabh, P., Zhang, H., Losonczy, G., Pearson, K., de Cabo, R., Pacher, P., Zhang, C., & Ungvari, Z. (2009). Resveratrol induces mitochondrial biogenesis in endothelial cells. American Journal of Physiology. Heart and Circulatory Physiology, 297(1), H13–H20. doi: 10.1152/ajpheart.00368.2009.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Hatter Institute for Cardiovascular Research in Africa (HICRA) and MRC Inter-University, Cape Heart Group, Department of Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa

Personalised recommendations