Large-Wave Simulation of Breaking Waves Over a Beach

  • A. A. DimasEmail author
  • A. S. Dimakopoulos
  • G. A. Kolokythas
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 24)


Wave transformation and breaking on a beach are associated with important coastal processes like wave-generated currents, sediment transport and coastal erosion.



This paper is part of the research project ARISTEIA I - 1718, implemented within the framework of the program Education and Lifelong Learning, and co-financed by the European Union (European Social Fund) and Hellenic Republic funds.


  1. 1.
    Bradford, S.F.: Numerical simulation of surf zone dynamics. J. Waterw Port Coast. Ocean Eng. 126(1), 1–13 (2000)CrossRefGoogle Scholar
  2. 2.
    Brocchini, M., Peregrine, D.H.: The dynamics of strong turbulence at free surfaces. Part 1. Description. J. Fluid Mech. 449, 225–254 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brocchini, M., Peregrine, D.H.: The dynamics of strong turbulence at free surfaces. Part 2. Free-surface boundary conditions. J. Fluid Mech. 449, 255–290 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Christensen, E.D.: Large eddy simulation of spilling and plunging breakers. Coast. Eng. 53(5–6), 463–485 (2006)CrossRefGoogle Scholar
  5. 5.
    Christensen, E.D., Deigaard, R.: Large eddy simulation of breaking waves. Coast. Eng. 42(1), 53–86 (2001)CrossRefGoogle Scholar
  6. 6.
    Dimakopoulos, A.S., Dimas, A.A.: Large-wave simulation of three-dimensional, cross-shore and oblique, spilling breaking on constant slope beach. Coast. Eng. 58(8), 790–801 (2011)CrossRefGoogle Scholar
  7. 7.
    Dimas, A.A., Fialkowski, L.T.: Large-wave simulation (LWS) of free-surface flows developing weak spilling breaking waves. J. Comput. Phys. 159(2), 172–196 (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Kolokythas, G.A., Dimas, A.A.: Numerical simulation of oblique wave breaking and wave-induced currents in the surf zone. In: Proceedings 33rd International Conference Offshore Mechanics and Arctic Engineering, OMAE2014-24125, pp. 1–9, San Francisco, USA (2014)Google Scholar
  9. 9.
    Lin, P., Liu, P.L.-F.: A numerical study of breaking waves in the surf zone. J. Fluid Mech. 359, 239–264 (1998)CrossRefzbMATHGoogle Scholar
  10. 10.
    Madsen, P.A., Sorensen, O.R., Schäffer, H.A.: Surf zone dynamics simulated by a Boussinesq type model. Part I. Model description and cross-shore motion of regular waves. Coast. Eng. 32(4), 255–287 (1997)CrossRefGoogle Scholar
  11. 11.
    Musumeci, R.E., Svendsen, I.A., Veeramony, J.: The flow in the surf zone: a fully nonlinear Boussinesq-type of approach. Coast. Eng. 52(7), 565–598 (2005)CrossRefGoogle Scholar
  12. 12.
    Ting, F.C.K., Kirby, J.T.: Observation of undertow and turbulence in a laboratory surf zone. Coast. Eng. 24(1–2), 51–80 (1994)CrossRefGoogle Scholar
  13. 13.
    Ting, F.C.K., Kirby, J.T.: Dynamics of surf-zone turbulence in a spilling breaker. Coast. Eng. 27(3–4), 131–160 (1996)CrossRefGoogle Scholar
  14. 14.
    Torres-Freyermuth, A., Losada, I.J., Lara, J.L.: Modeling of surf zone processes on a natural beach using Reynolds-averaged Navier-Stokes equations. J. Geophys. Res. 112, C09014 (2007)CrossRefGoogle Scholar
  15. 15.
    Watanabe, Y., Saeki, H., Hosking, R.J.: Three-dimensional vortex structures under breaking waves. J. Fluid Mech. 545, 291–328 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • A. A. Dimas
    • 1
    Email author
  • A. S. Dimakopoulos
    • 2
  • G. A. Kolokythas
    • 3
  1. 1.Department of Civil Engineering, Laboratory of Hydraulic EngineeringUniversity of PatrasPatrasGreece
  2. 2.Coastal StructuresHR WallingfordWallingfordUK
  3. 3.Department of Mobility and Public WorksFlanders Hydraulics Research, Flemish GovernmentAntwerpBelgium

Personalised recommendations