Advertisement

Wall Modeled Large Eddy Simulation of the VFE-2 Delta Wing

  • C. ZwergerEmail author
  • S. Hickel
  • C. Breitsamter
  • N. Adams
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 24)

Abstract

Delta wing configurations are commonly employed for high agility supersonic aircraft and aerodynamic devices such as vortex generators, and have thus been a focus of extensive investigations over the past decades.

References

  1. 1.
    Chen, Z.L., Hickel, S., Devesa, A., Berland, J., Adams, N.A.: Wall modeling for implicit large-eddy simulation and immersed-interface methods. Theor. Comput. Fluid Dyn. 28, 1–21 (2014)CrossRefGoogle Scholar
  2. 2.
    Chu, J., Luckring, J.M.: Experimental surface pressure data obtained on \(65^{\circ }\) delta wing across reynolds number and mach number ranges. In: NASA technical memorandum 4645, vol. 3 - Medium-Radius Leading Edge (1996)Google Scholar
  3. 3.
    Crivellini, A., D’Alessandro, V., Bassi, F.: High-order discontinuous Galerkin RANS solutions of the incompressible flow over a delta wing. Comput. Fluids 88, 663–677 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Drougge, G.: The international vortex flow experiment for computer code validation. In: ICAS-Proceedings, Jerusalem (1988)Google Scholar
  5. 5.
    Fritz, W., Cummings, R.M.: Lessons learned from the numerical investigations on the VFE-2 configuration. In: NATO STO, Summary Report of Task Group AVT-113, Chapter 34 (2009)Google Scholar
  6. 6.
    Furman, A., Breitsamter, C.: Experimental Investigations on the VFE-2 Configuration at TU Munich, Germany. In: NATO STO, Summary Report of Task Group AVT-113, Chapter 21 (2009)Google Scholar
  7. 7.
    Furman, A., Breitsamter, C.: Turbulent and unsteady flow characteristics of delta wing vortex systems. Aerosp. Sci. Tech. 24, 32–44 (2013)CrossRefGoogle Scholar
  8. 8.
    Grilli, M., Hickel, S., Hu, X.Y., Adams, N.A.: Conservative immersed boundary method for compressible viscous flows. In: Annual Report 2009 of the Sonderforschungsbereich/Transregio 40 (TRR40), Technische Universität München (2009)Google Scholar
  9. 9.
    Hickel, S., Adams, N.A., Domaradzki, J.A.: An adaptive local deconvolution method for implicit LES. J. Comput. Phys. 213, 413–436 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hickel, S., Egerer, C.P., Larsson, J.: Subgrid-scale modeling for implicit Large Eddy Simulation of compressible flows and shock turbulence interaction. Phys. Fluids 26, 106101 (2014)CrossRefGoogle Scholar
  11. 11.
    Hummel, D.: Effects of boundary layer formation on the vortical flow above slender delta wings. In: RTO symposium on enhancement of NATO military flight vehicle performance by management of interacting boundary layer transition and separation, Prague (2004)Google Scholar
  12. 12.
    Hummel, D.: The international vortex flow experiment 2 (VFE-2): objectives and overview. In: NATO STO, summary report of task group AVT-113, Chapter 17 (2009)Google Scholar
  13. 13.
    Kölzsch, A., Breitsamter, C.: Vortex-flow manipulation on a generic delta-wing configuration. J. Aircr. 51, 1380–1390 (2014)CrossRefGoogle Scholar
  14. 14.
    Luckring, J.M.: Initial experiments and analysis of blunt-edge vortex flows. In: NATO STO, summary report of task group AVT-113, Chapter 18 (2009)Google Scholar
  15. 15.
    Mitchell, A., Délery, J.: Research into vortex breakdown control. Prog. Aerosp. Sci. 37, 385–418 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • C. Zwerger
    • 1
    Email author
  • S. Hickel
    • 1
    • 2
  • C. Breitsamter
    • 1
  • N. Adams
    • 1
  1. 1.Technische Universität MünchenInstitute of Aerodynamics and Fluid MechanicsGarchingGermany
  2. 2.Technische Universiteit DelftFaculty of Aerospace EngineeringDelftThe Netherlands

Personalised recommendations