LES of Cavitating Nozzle and Jet Flows

  • F. Örley
  • T. Trummler
  • M. S. Mihatsch
  • S. J. Schmidt
  • S. Hickel
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 24)


We present an Eulerian three-component two-phase model for the large-eddy simulation (LES) of the cavitating flow within liquid-fuel injectors and the primary atomization of injected fuel jets. The model is applied to a generic nozzle and jet flow at different cavitation numbers and Reynolds numbers. We find that the LES correctly reproduce experimentally observed cavitation effects. Cavitation collapse events near the exit plane of the nozzle increase the turbulence level, perturb the liquid-gas interface, and enhance the jet breakup.



Computing time was granted by the Leibnitz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences and Humanities.


  1. 1.
    Egerer, C.P., Hickel, S., Schmidt, S.J., Adams, N.A.: Large-eddy simulation of turbulent cavitating flow in a micro channel. Phys. Fluids 26(8), 085102 (2014)CrossRefGoogle Scholar
  2. 2.
    Hickel, S., Adams, N.A., Domaradzki, J.A.: An adaptive local deconvolution method for implicit LES. J. Comput. Phys. 213(1), 413–436 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hickel, S., Mihatsch, M., Schmidt, S.J.: Implicit large eddy simulation of cavitation in micro channel flows. In: Proceedings of the WIMRC 3rd International Cavitation Forum, University of Warwick, UK (2011)Google Scholar
  4. 4.
    Hickel, S., Egerer, C., Larsson, J.: Subgrid-scale modeling for implicit large eddy simulation of compressible flows and shock-turbulence interaction. Phys. Fluids 26(10), 106101 (2014)CrossRefGoogle Scholar
  5. 5.
    Lauer, E., Hu, X.Y., Hickel, S., Adams, N.A.: Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics. Comput. Fluids 69, 1–19 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Örley, F., Pasquariello, V., Hickel, S., Adams, N.A.: Cut-element based immersed boundary method for moving geometries in compressible liquid flows with cavitation. J. Comput. Phys. 283(C), 1–22 (2015)Google Scholar
  7. 7.
    Örley, F., Trummer, T., Hickel, S., Mihatsch, M.S., Schmidt, S.J., Adams, N.A.: Large-eddy simulation of cavitating nozzle flow and primary jet break-up. Phys. Fluids 27(8), 086101 (2015)CrossRefGoogle Scholar
  8. 8.
    Örley, F., Hickel, S., Schmidt, S.J., Adams, N.A.: Large-eddy simulation of turbulent, cavitating flow inside a 9-hole Diesel injector including needle movement. Int. J. Engine Res. 18, 195–211 (2017)CrossRefGoogle Scholar
  9. 9.
    Sou, A., Hosokawa, S., Tomiyama, A.: Effects of cavitation in a nozzle on liquid jet atomization. Int. J. Heat Mass Transf. 50, 3575–3582 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Sou, A., Tomiyama, A., Hosokawa, S., Nigorikawa, S., Maeda, T.: Cavitation in a two-dimensional nozzle and liquid jet atomization. JSME Int. J. Ser. B, Fluids Thermal Eng. 49(4), 1253–1259 (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • F. Örley
    • 1
  • T. Trummler
    • 1
  • M. S. Mihatsch
    • 1
  • S. J. Schmidt
    • 1
  • S. Hickel
    • 1
    • 2
  1. 1.Institute of Aerodynamics and Fluid MechanicsTechnische Universität MünchenGarching bei MünchenGermany
  2. 2.Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations