Verification of Time-Aware Business Processes Using Constrained Horn Clauses

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10184)

Abstract

We present a method for verifying properties of time-aware business processes, that is, business processes where time constraints on the activities are explicitly taken into account. Business processes are specified using an extension of the Business Process Modeling Notation (BPMN) and durations are defined by constraints over integer numbers. The definition of the operational semantics is given by a set OpSem of constrained Horn clauses (CHCs). Our verification method consists of two steps. (Step 1) The specialization of OpSem with respect to a given business process and a given temporal property to be verified. This specialization produces a set of CHCs whose satisfiability is equivalent to the validity of the given property. (Step 2) The use of any state-of-the-art solver for CHCs to check the satisfiability of such sets of clauses. We have implemented our verification method using the VeriMAP transformation system and the Z3 solver for CHCs.

References

  1. 1.
    Arbab, F., Kokash, N., Meng, S.: Towards using Reo for compliance-aware business process modeling. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 108–123. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88479-8_9 CrossRefGoogle Scholar
  2. 2.
    Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification of relational data-centric dynamic systems with external services. In: Proceedings of PODS 2013, pp. 163–174 (2013)Google Scholar
  3. 3.
    Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time Petri nets. IEEE Trans. Softw. Eng. 17(3), 259–273 (1991)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berthomieu, B., Vernadat, F.: Time Petri nets analysis with TINA. In: Proceedings of QEST 2006, pp. 123–124. IEEE Computer Society (2006)Google Scholar
  5. 5.
    Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner, B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp. 24–51. Springer, Cham (2015). doi:10.1007/978-3-319-23534-9_2 CrossRefGoogle Scholar
  6. 6.
    Cheikhrouhou, S., Kallel, S., Guermouche, N., Jmaiel, M.: The temporal perspective in business process modeling: a survey and research challenges. Serv. Oriented Comput. Appl. 9(1), 75–85 (2015)CrossRefGoogle Scholar
  7. 7.
    Combi, C., Posenato, R.: Controllability in temporal conceptual workflow schemata. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 64–79. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03848-8_6 CrossRefGoogle Scholar
  8. 8.
    Combi, C., Gozzi, M., Posenato, R., Pozzi, G.: Conceptual modeling of flexible temporal workflows. ACM Trans. Auton. Adapt. Syst. 7(2), 19:1–19:29 (2012)CrossRefGoogle Scholar
  9. 9.
    Damaggio, E., Deutsch, A., Vianu, V.: Artifact systems with data dependencies and arithmetic. ACM Trans. Database Syst. 37(3), 1–36 (2012)CrossRefGoogle Scholar
  10. 10.
    de Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: VeriMAP: a tool for verifying programs through transformations. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 568–574. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8_47
  11. 11.
    De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Semantics-based generation of verification conditions by program specialization. Science of Computer Programming. Elsevier (2017)Google Scholar
  12. 12.
    de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78800-3_24
  13. 13.
    Etalle, S., Gabbrielli, M.: Transformations of CLP modules. Theor. Comput. Sci. 166, 101–146 (1996)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Formal Systems (Europe) Ltd., Failures-Divergences Refinement, FDR2 User Manual (1998). www.fsel.com
  15. 15.
    del Foyo, P.M.G., Silva, J.R.: Using time Petri nets for modelling and verification of timed constrained workflow systems. In: Proceedings of ABCM Symposium Series in Mechatronics, ABCM, vol. 3(1), pp. 471–478. ABCM, Brazilian Society of Mechanical Sciences and Engineering (2008)Google Scholar
  16. 16.
    Gagné, D., Trudel, A.: Time-BPMN. In: Proceedings of CEC 2009, pp. 361–367. IEEE Computer Society (2009)Google Scholar
  17. 17.
    Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677 (1978)CrossRefMATHGoogle Scholar
  18. 18.
    Hojjat, H., Konečný, F., Garnier, F., Iosif, R., Kuncak, V., Rümmer, P.: A verification toolkit for numerical transition systems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 247–251. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32759-9_21 CrossRefGoogle Scholar
  19. 19.
    Huai, W., Liu, X., Sun, H.: Towards trustworthy composite service through business process model verification. In: Proceedings of UIC-ATC 2010, pp. 422–427. IEEE Computer Society (2010)Google Scholar
  20. 20.
    Jaffar, J., Maher, M.: Constraint logic programming: a survey. J. Logic Program. 19(20), 503–581 (1994)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. New Gener. Comput. 4(1), 67–95 (1986)CrossRefMATHGoogle Scholar
  22. 22.
    Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools Technol. Transfer 1(1–2), 134–152 (1997)CrossRefMATHGoogle Scholar
  23. 23.
    Lloyd, J.W.: Foundations of Logic Programming. Second, Extended Edition. Springer, Heidelberg (1987)CrossRefMATHGoogle Scholar
  24. 24.
    Makni, M., Tata, S., Yeddes, M., Ben Hadj-Alouane, N.: Satisfaction and coherence of deadline constraints in inter-organizational workflows. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 523–539. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16934-2_39 CrossRefGoogle Scholar
  25. 25.
    McMillan, K., Rybalchenko, A.: Computing relational fixed points using interpolation. Technical Report MSR-TR-2013-6, Microsoft Research, January 2013Google Scholar
  26. 26.
    Montali, M., Maggi, F., Chesani, F., Mello, P., van der Aalst, W.M.P.: Monitoring business constraints with the event calculus. ACM Trans. Intell. Syst. Technol. 5(1), 17:1–17:30 (2014)Google Scholar
  27. 27.
    OMG. Business Process Model and Notation (2013). www.omg.org/spec/BPMN/
  28. 28.
    Peralta, J.C., Gallagher, J.P., Sağlam, H.: Analysis of imperative programs through analysis of constraint logic programs. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 246–261. Springer, Heidelberg (1998). doi:10.1007/3-540-49727-7_15 CrossRefGoogle Scholar
  29. 29.
    Proietti, M., Smith, F.: Reasoning on data-aware business processes with constraint logic. In: Proceedings of SIMPDA 2014, vol. 1293 of CEUR, pp. 60–75 (2014)Google Scholar
  30. 30.
    Smith, F., Proietti, M.: Rule-based behavioral reasoning on semantic business processes. In: Proceedings of ICAART 2013, vol. II, pp. 130–143. SciTePress (2013)Google Scholar
  31. 31.
    ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N. (eds.): Modern Business Process Automation: YAWL and its Support Environment. Springer, Heidelberg (2010)Google Scholar
  32. 32.
    Watahiki, K., Ishikawa, F., Hiraishi, K.: Formal verification of business processes with temporal and resource constraints. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 1173–1180. IEEE (2011)Google Scholar
  33. 33.
    Weber, I., Hoffmann, J., Mendling, J.: Beyond soundness: on the verification of semantic business process models. Distrib. Parallel Databases 27, 271–343 (2010)CrossRefGoogle Scholar
  34. 34.
    Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer, Heidelberg (2007)Google Scholar
  35. 35.
    Wong, P.Y.H., Gibbons, J.: A relative timed semantics for BPMN. Electr. Notes Theor. Comput. Sci. 229(2), 59–75 (2009)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.DECUniversity ‘G. D’ Annunzio’PescaraItaly
  2. 2.DICIIUniversity of Rome Tor VergataRomeItaly
  3. 3.IASI-CNRRomeItaly

Personalised recommendations