A Reversible Semantics for Erlang

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10184)

Abstract

In a reversible language, any forward computation can be undone by a finite sequence of backward steps. Reversible computing has been studied in the context of different programming languages and formalisms, where it has been used for debugging and for enforcing fault-tolerance, among others. In this paper, we consider a subset of Erlang, a concurrent language based on the actor model, and formally introduce a semantics for reversible computation. To the best of our knowledge, this is the first attempt to define a reversible semantics for Erlang.

References

  1. 1.
    Armstrong, J., Virding, R., Williams, M.: Concurrent Programming in Erlang, 2nd edn. Prentice Hall, Englewood Cliffs (1996)MATHGoogle Scholar
  2. 2.
    Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bennett, C.: Notes on the history of reversible computation. IBM J. Res. Dev. 44(1), 270–278 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Caballero, R., Martn-Martn, E., Riesco, A., Tamarit, S.: A declarative debugger for concurrent Erlang programs (extended version). Technical report SIC-15/13, UCM (2013). http://maude.sip.ucm.es/~adrian/files/conc_cal_tr.pdf
  5. 5.
    Cardelli, L., Laneve, C.: Reversible structures. In: Proceedings of CMSB 2011, pp. 131–140. ACM (2011)Google Scholar
  6. 6.
    Carlsson, R., Gustavsson, B., Johansson, E., et al.: Core Erlang 1.0.3. language specification (2004). https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
  7. 7.
    Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28644-8_19 CrossRefGoogle Scholar
  8. 8.
    Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005). doi:10.1007/11539452_31 CrossRefGoogle Scholar
  9. 9.
    Field, J., Varela, C.A.: Transactors: a programming model for maintaining globally consistent distributed state in unreliable environments. In: Proceedings of POPL 2005, pp. 195–208. ACM (2005)Google Scholar
  10. 10.
    Frank, M.P.: Introduction to reversible computing: motivation, progress, and challenges. In: Proceedings of 2nd Conference on Computing Frontiers, pp. 385–390. ACM (2005)Google Scholar
  11. 11.
    Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 370–384. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54804-8_26 CrossRefGoogle Scholar
  12. 12.
    Giachino, E., Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent Reversibility in a Tuple Based Language. In: Proceedings of PDP 2015, pp. 467–475. IEEE Computer Society (2015)Google Scholar
  13. 13.
    Kuang, P., Field, J., Varela, C.A.: Fault tolerant distributed computing using asynchronous local checkpointing. In: Proceedings of AGERE! 2014, pp. 81–93. ACM (2014)Google Scholar
  14. 14.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility in higher-order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 297–311. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23217-6_20 CrossRefGoogle Scholar
  16. 16.
    Lanese, I., Mezzina, C.A., Stefani, J.: Reversibility in the higher-order \(\pi \)-calculus. Theor. Comput. Sci. 625, 25–84 (2016)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lienhardt, M., Lanese, I., Mezzina, C.A., Stefani, J.-B.: A reversible abstract machine and its space overhead. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE -2012. LNCS, vol. 7273, pp. 1–17. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30793-5_1 CrossRefGoogle Scholar
  18. 18.
    Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization transformation based on automatic derivation of view complement functions. In Proceedings of ICFP 2007, pp. 47–58. ACM (2007)Google Scholar
  19. 19.
    Nishida, N., Palacios, A., Vidal, G.: Reversible term rewriting. In: Proceedings of FSCD 2016. Leibniz International Proceedings in Informatics (2016)Google Scholar
  20. 20.
    Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr. Program. 73(1–2), 70–96 (2007)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Svensson, H., Fredlund, L.A., Earle, C.B.: A unified semantics for future Erlang. In: Proceedings of the 9th ACM SIGPLAN workshop on Erlang, pp. 23–32. ACM (2010)Google Scholar
  22. 22.
    Thomsen, M.K., Axelsen, H.B.: Interpretation and programming of the reversible functional language RFUN. In: Proceedings of IFL 2015, p. 8:1–8:13. ACM (2016)Google Scholar
  23. 23.
    Tiezzi, F., Yoshida, N.: Reversible session-based pi-calculus. J. Log. Algebr. Meth. Program. 84(5), 684–707 (2015)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Yokoyama, T.: Reversible computation and reversible programming languages. Electron. Notes Theor. Comput. Sci. 253(6), 71–81 (2010). Proceedings of the Workshop on Reversible Computation (RC 2009)Google Scholar
  25. 25.
    Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming language. In: Proceedings of the 5th Conference on Computing Frontiers, pp. 43–54. ACM (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Naoki Nishida
    • 1
  • Adrián Palacios
    • 2
  • Germán Vidal
    • 2
  1. 1.Graduate School of InformaticsNagoya UniversityNagoyaJapan
  2. 2.MiST, DSICUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations