Comparing Source Sets and Persistent Sets for Partial Order Reduction

  • Parosh Abdulla
  • Stavros Aronis
  • Bengt JonssonEmail author
  • Konstantinos Sagonas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10460)


Partial order reduction has traditionally been based on persistent sets, ample sets, stubborn sets, or variants thereof. Recently, we have presented a strengthening of this foundation, using source sets instead of persistent/ample/stubborn sets. Source sets subsume persistent sets and are often smaller than persistent sets. We introduced source sets as a basis for Dynamic Partial Order Reduction (DPOR), in a framework which assumes that processes are deterministic and that all program executions are finite. In this paper, show how to use source sets for partial order reduction in a framework which does not impose these restrictions. We also compare source sets with persistent sets, providing some insights into conditions under which source sets and persistent sets do or do not differ.



We would like to thank the anonymous reviewers for comments and suggestions that have improved the presentation.


  1. 1.
    Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.: Stateless model checking for TSO and PSO. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 353–367. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46681-0_28 Google Scholar
  2. 2.
    Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order reduction. In: Proceeedings of the 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2014, pp. 373–384. ACM, New York (2014)Google Scholar
  3. 3.
    Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  4. 4.
    Bengtsson, J., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed systems. In: Sangiorgi, D., Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 485–500. Springer, Heidelberg (1998). doi: 10.1007/BFb0055643 CrossRefGoogle Scholar
  5. 5.
    Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL — a tool suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg (1996). doi: 10.1007/BFb0020949 CrossRefGoogle Scholar
  6. 6.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logics specification: a practical approach. In: Conference Record of the Tenth Annual ACM Symposium on Principles of Programming Languages, pp. 117–126. ACM Press (1983).
  7. 7.
    Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using partial order techniques. Int. J. Softw. Tools Technol. Transf. 2(3), 279–287 (1999). CrossRefzbMATHGoogle Scholar
  8. 8.
    Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking software. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2005, pp. 110–121 (2005).
  9. 9.
    Godefroid, P.: Partial-order methods for the verification of concurrent systems: an approach to the state-explosion problem. Ph.D. thesis, University of Liège (1996). Also, vol. 1032 of LNCS, SpringerGoogle Scholar
  10. 10.
    Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of deadlock freedom and safety properties. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 332–342. Springer, Heidelberg (1992). doi: 10.1007/3-540-55179-4_32 CrossRefGoogle Scholar
  11. 11.
    Holzmann, G.: The model checker SPIN. IEEE Trans. Softw. Eng. SE-23(5), 279–295 (1997)Google Scholar
  12. 12.
    Huang, J.: Stateless model checking concurrent programs with maximal causality reduction. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2015, pp. 165–174. ACM, New York (2015).
  13. 13.
    Kähkönen, K., Saarikivi, O., Heljanko, K.: Unfolding based automated testing of multithreaded programs. Autom. Softw. Eng. 22(4), 475–515 (2015). CrossRefGoogle Scholar
  14. 14.
    Lauterburg, S., Karmani, R.K., Marinov, D., Agha, G.: Evaluating ordering heuristics for dynamic partial-order reduction techniques. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp. 308–322. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12029-9_22 CrossRefGoogle Scholar
  15. 15.
    Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987). doi: 10.1007/3-540-17906-2_30 CrossRefGoogle Scholar
  16. 16.
    McMillan, K.L., Probst, D.K.: A technique of a state space search based on unfolding. Form. Methods Syst. Des. 6(1), 45–65 (1995)CrossRefzbMATHGoogle Scholar
  17. 17.
    Overman, W.: Verification of concurrent systems: function and timing. Ph.D. thesis, UCLA, August 1981Google Scholar
  18. 18.
    Peled, D.: All from one, one for all: on model checking using representatives. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993). doi: 10.1007/3-540-56922-7_34 CrossRefGoogle Scholar
  19. 19.
    Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982). doi: 10.1007/3-540-11494-7_22 CrossRefGoogle Scholar
  20. 20.
    Rodríguez, C., Sousa, M., Sharma, S., Kroening, D.: Unfolding-based partial order reduction. In: 26th International Conference on Concurrency Theory, CONCUR 2015. LIPIcs, vol. 42, pp. 456–469. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015).
  21. 21.
    Saarikivi, O., Kähkönen, K., Heljanko, K.: Improving dynamic partial order reductions for concolic testing. In: 12th International Conference on Application of Concurrency to System Design (ACSD), pp. 132–141. IEEE, Los Alamitos, June 2012Google Scholar
  22. 22.
    Salah, R.B., Bozga, M., Maler, O.: On interleaving in timed automata. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 465–476. Springer, Heidelberg (2006). doi: 10.1007/11817949_31 CrossRefGoogle Scholar
  23. 23.
    Sen, K., Agha, G.: Automated systematic testing of open distributed programs. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 339–356. Springer, Heidelberg (2006). doi: 10.1007/11693017_25 CrossRefGoogle Scholar
  24. 24.
    Sen, K., Agha, G.: A race-detection and flipping algorithm for automated testing of multi-threaded programs. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS, vol. 4383, pp. 166–182. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-70889-6_13 CrossRefGoogle Scholar
  25. 25.
    Şerbănuţă, T.F., Chen, F., Roşu, G.: Maximal Causal Models for Sequentially Consistent Systems. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 136–150. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-35632-2_16 CrossRefGoogle Scholar
  26. 26.
    Tasharofi, S., Karmani, R.K., Lauterburg, S., Legay, A., Marinov, D., Agha, G.: TransDPOR: a novel dynamic partial-order reduction technique for testing actor programs. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE -2012. LNCS, vol. 7273, pp. 219–234. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30793-5_14 CrossRefGoogle Scholar
  27. 27.
    Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G. (ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991). doi: 10.1007/3-540-53863-1_36 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Parosh Abdulla
    • 1
  • Stavros Aronis
    • 1
  • Bengt Jonsson
    • 1
    Email author
  • Konstantinos Sagonas
    • 1
  1. 1.Department of Information TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations