Syntactic Markovian Bisimulation for Chemical Reaction Networks

  • Luca Cardelli
  • Mirco Tribastone
  • Max Tschaikowski
  • Andrea VandinEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10460)


In chemical reaction networks (CRNs) with stochastic semantics based on continuous-time Markov chains (CTMCs), the typically large populations of species cause combinatorially large state spaces. This makes the analysis very difficult in practice and represents the major bottleneck for the applicability of minimization techniques based, for instance, on lumpability. In this paper we present syntactic Markovian bisimulation (SMB), a notion of bisimulation developed in the Larsen-Skou style of probabilistic bisimulation, defined over the structure of a CRN rather than over its underlying CTMC. SMB identifies a lumpable partition of the CTMC state space a priori, in the sense that it is an equivalence relation over species implying that two CTMC states are lumpable when they are invariant with respect to the total population of species within the same equivalence class. We develop an efficient partition-refinement algorithm which computes the largest SMB of a CRN in polynomial time in the number of species and reactions. We also provide an algorithm for obtaining a quotient network from an SMB that induces the lumped CTMC directly, thus avoiding the generation of the state space of the original CRN altogether. In practice, we show that SMB allows significant reductions in a number of models from the literature. Finally, we study SMB with respect to the deterministic semantics of CRNs based on ordinary differential equations (ODEs), where each equation gives the time-course evolution of the concentration of a species. SMB implies forward CRN bisimulation, a recently developed behavioral notion of equivalence for the ODE semantics, in an analogous sense: it yields a smaller ODE system that keeps track of the sums of the solutions for equivalent species.



This work was partially supported by the EU project QUANTICOL, 600708. L. Cardelli is partially funded by a Royal Society Research Professorship.


  1. 1.
    Abate, A., Brim, L., Češka, M., Kwiatkowska, M.: Adaptive aggregation of Markov chains: quantitative analysis of chemical reaction networks. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 195–213. Springer, Cham (2015). doi: 10.1007/978-3-319-21690-4_12 CrossRefGoogle Scholar
  2. 2.
    Autant, C., Schnoebelen, P.: Place bisimulations in Petri nets. In: Jensen, K. (ed.) ICATPN 1992. LNCS, vol. 616, pp. 45–61. Springer, Heidelberg (1992). doi: 10.1007/3-540-55676-1_3 CrossRefGoogle Scholar
  3. 3.
    Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and similarity for probabilistic processes. J. Comput. Syst. Sci. 60(1), 187–231 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20(17), 3289–3291 (2004)CrossRefGoogle Scholar
  5. 5.
    Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl. Probab. 31(1), 59–75 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cardelli, L.: On process rate semantics. Theoret. Comput. Sci. 391(3), 190–215 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cardelli, L.: Morphisms of reaction networks that couple structure to function. BMC Syst. Biol. 8(1), 84 (2014)CrossRefGoogle Scholar
  8. 8.
    Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward bisimulations for chemical reaction networks. In: CONCUR, pp. 226–239 (2015)Google Scholar
  9. 9.
    Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Comparing chemical reaction networks: a categorical and algorithmic perspective. In: LICS, pp. 485–494 (2016)Google Scholar
  10. 10.
    Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Efficient syntax-driven lumping of differential equations. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 93–111. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49674-9_6 CrossRefGoogle Scholar
  11. 11.
    Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation of differential equivalences. In: POPL, pp. 137–150 (2016)Google Scholar
  12. 12.
    Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: a tool for the evaluation and reduction of ordinary differential equations. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 310–328. Springer, Heidelberg (2017). doi: 10.1007/978-3-662-54580-5_19 CrossRefGoogle Scholar
  13. 13.
    Cardelli, L., Zavattaro, G.: Turing universality of the biochemical ground form. Math. Struct. Comput. Sci. 20(1), 45–73 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cardelli, L., Csikász-Nagy, A., Dalchau, N., Tribastone, M., Tschaikowski, M.: Noise reduction in complex biological switches. Sci. Rep. 6, 20214 (2016)CrossRefGoogle Scholar
  15. 15.
    Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis of biological systems. Theoret. Comput. Sci. 410(33–34), 3065–3084 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Conzelmann, H., Fey, D., Gilles, E.D.: Exact model reduction of combinatorial reaction networks. BMC Syst. Biol. 2, 78 (2008)CrossRefGoogle Scholar
  17. 17.
    Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differential semantics of rule-based models: exact and automated model reduction. In: LICS (2010)Google Scholar
  18. 18.
    Danos, V., Feret, J., Fontana, W., Krivine, J.: Scalable simulation of cellular signaling networks. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 139–157. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-76637-7_10 CrossRefGoogle Scholar
  19. 19.
    Danos, V., Laneve, C.: Formal molecular biology. TCS 325(1), 69–110 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov chains. Inf. Process. Lett. 87(6), 309–315 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dushek, O., van der Merwe, P.A., Shahrezaei, V.: Ultrasensitivity in multisite phosphorylation of membrane-anchored proteins. Biophys. J. 100(5), 1189–1197 (2011)CrossRefGoogle Scholar
  22. 22.
    Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297(5584), 1183–1186 (2002)CrossRefGoogle Scholar
  23. 23.
    Feinberg, M.: Lectures on chemical reaction networks. Technical report, University of Wisconsin (1979)Google Scholar
  24. 24.
    Feret, J., Henzinger, T., Koeppl, H., Petrov, T.: Lumpability abstractions of rule-based systems. TCS 431, 137–164 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Gay, S., Soliman, S., Fages, F.: A graphical method for reducing and relating models in systems biology. Bioinformatics 26(18), i575–i581 (2010)CrossRefGoogle Scholar
  26. 26.
    Gillespie, D.: The chemical Langevin equation. J. Chem. Phys. 113(1), 297–306 (2000)CrossRefGoogle Scholar
  27. 27.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  28. 28.
    Gilmore, S., Hillston, J., Ribaudo, M.: An efficient algorithm for aggregating PEPA models. IEEE Trans. Softw. Eng. 27(5), 449–464 (2001)CrossRefGoogle Scholar
  29. 29.
    Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic model checking of complex biological pathways. TCS 391(3), 239–257 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Hermanns, H., Ribaudo, M.: Exploiting symmetries in stochastic process algebras. In: European Simulation Multiconference, Manchester, UK, pp. 763–770, June 1998Google Scholar
  31. 31.
    Hillston, J.: A Compositional Approach to Performance Modelling. CUP, Cambridge (1996)CrossRefzbMATHGoogle Scholar
  32. 32.
    Huynh, D.T., Tian, L.: On some equivalence relations for probabilistic processes. Fundam. Inform. 17(3), 211–234 (1992)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Iacobelli, G., Tribastone, M., Vandin, A.: Differential bisimulation for a Markovian process algebra. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 293–306. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48057-1_23 CrossRefGoogle Scholar
  34. 34.
    Kurtz, T.G.: The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57(7), 2976–2978 (1972)CrossRefGoogle Scholar
  35. 35.
    Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic model checking. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 234–248. Springer, Heidelberg (2006). doi: 10.1007/11817963_23 CrossRefGoogle Scholar
  36. 36.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Rózsa, Z., Tóth, J.: Exact linear lumping in abstract spaces. Electron. J. Qual. Theory Differ. Eqn. 21(7), 1–20 (2004). Proceedings of the Colloquium on the Qualitative Theory of Differential EquationszbMATHGoogle Scholar
  39. 39.
    Sneddon, M.W., Faeder, J.R., Emonet, T.: Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. Nat. Methods 8(2), 177–183 (2011)CrossRefGoogle Scholar
  40. 40.
    Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Tognazzi, S., Tribastone, M., Tschaikowski, M., Vandin, A.: EGAC: a genetic algorithm to compare chemical reaction networks. In: The Genetic and Evolutionary Computation Conference (GECCO) (2017, to appear)Google Scholar
  42. 42.
    Tschaikowski, M., Tribastone, M.: Exact fluid lumpability for Markovian process algebra. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 380–394. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32940-1_27 CrossRefGoogle Scholar
  43. 43.
    Tschaikowski, M., Tribastone, M.: Generalised communication for interacting agents. In: QEST, pp. 178–188, September 2012Google Scholar
  44. 44.
    Tschaikowski, M., Tribastone, M.: Tackling continuous state-space explosion in a markovian process algebra. Theoret. Comput. Sci. 517, 1–33 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Tschaikowski, M., Tribastone, M.: A unified framework for differential aggregations in Markovian process algebra. JLAMP 84(2), 238–258 (2015)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Tschaikowski, M., Tribastone, M.: Approximate reduction of heterogenous nonlinear models with differential hulls. IEEE Trans. Automat. Contr. 61(4), 1099–1104 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Vandin, A., Tribastone, M.: Quantitative abstractions for collective adaptive systems. In: Bernardo, M., Nicola, R., Hillston, J. (eds.) SFM 2016. LNCS, vol. 9700, pp. 202–232. Springer, Cham (2016). doi: 10.1007/978-3-319-34096-8_7 Google Scholar
  48. 48.
    Zavattaro, G., Cardelli, L.: Termination problems in chemical kinetics. In: Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 477–491. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85361-9_37 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Luca Cardelli
    • 1
  • Mirco Tribastone
    • 2
  • Max Tschaikowski
    • 2
  • Andrea Vandin
    • 2
    Email author
  1. 1.Microsoft Research and University of OxfordOxfordUK
  2. 2.IMT School for Advanced Studies LuccaLuccaItaly

Personalised recommendations