Towards Automated Variant Selection for Heterogeneous Tiled Architectures

Part of the Lecture Notes in Computer Science book series (LNCS, volume 10460)


Heterogeneous hardware/software systems that include many components with different characteristics offer great potential for high performance and energy-efficient computing. To exploit this potential, adaptive allocation and scheduling algorithms are needed for selecting software variants and mapping them to processing elements that attempt to achieve a good balance between resource-awareness and performance. The evaluation is typically carried out using simulation techniques. However, the space spanned by the possible combinations of hardware/software variants and management strategies is huge, which makes it nearly impossible to find an optimum using simulation-based methods. The purpose of the paper is to illustrate the general feasibility of an alternative approach using probabilistic model checking for families of systems that are obtained by varying, e.g., the hardware-software combinations or the resource management strategies. More precisely, we consider heterogeneous multi-processor systems based on tiled architectures and provide a tool chain that yields a flexible and comfortable way to specify families of concrete systems and to analyze them using the probabilistic model checker PRISM and ProFeat as a front end. We illustrate how the family-based approach can be used to analyze the potential of heterogeneous hardware elements, software variants and adaptive resource management and scheduling strategies by applying our framework to a simplified model of the multi-processor Tomahawk platform that has been designed for integrating heterogeneous devices.


  1. 1.
    Arnold, O., Matus, E., Noethen, B., Winter, M., Limberg, T., Fettweis, G.: Tomahawk: parallelism and heterogeneity in communications signal processing MPSoCs. ACM Trans. Embed. Comput. Syst. 13(3s), 107:1–107:24 (2014)CrossRefGoogle Scholar
  2. 2.
    Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quantiles. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 285–299. Springer, Cham (2014). doi: 10.1007/978-3-319-06200-6_24 CrossRefGoogle Scholar
  3. 3.
    Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A.: Statistical abstraction and model-checking of large heterogeneous systems. STTT 14(1), 53–72 (2012)CrossRefGoogle Scholar
  4. 4.
    Bell, S., Edwards, B., Amann, J., Conlin, R., Joyce, K., Leung, V., MacKay, J., Reif, M., Bao, L., Brown III, J.F., Mattina, M., Miao, C.-C., Ramey, C., Wentzlaff, D., Anderson, W., Berger, E., Fairbanks, N., Khan, D., Montenegro, F., Stickney, J., Zook, J.: TILE64 - processor: a 64-core soc with mesh interconnect. In: 2008 IEEE International Solid-State Circuits Conference, ISSCC 2008, Digest of Technical Papers, San Francisco, CA, USA, 3–7 February 2008, pp. 88–89. IEEE (2008)Google Scholar
  5. 5.
    Bodden, E., Tolêdo, T., Ribeiro, M., Brabrand, C., Borba, P., Mezini, M.: Spl\({}^{\text{lift}}\): statically analyzing software product lines in minutes instead of years. In: ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pp. 355–364. ACM (2013)Google Scholar
  6. 6.
    Brekling, A.W., Hansen, M.R., Madsen, J.: Models and formal verification of multiprocessor system-on-chips. J. Logic Algebraic Program. 77(1–2), 1–19 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: Family-based modeling and analysis for probabilistic systems – featuring ProFeat. In: Stevens, P., Wąsowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 287–304. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49665-7_17 CrossRefGoogle Scholar
  8. 8.
    Classen, A., Cordy, M., Schobbens, P., Heymans, P., Legay, A., Raskin, J.: Featured transition systems: foundations for verifying variability-intensive systems and their application to LTL model checking. IEEE Trans. Softw. Eng. 39(8), 1069–1089 (2013)CrossRefGoogle Scholar
  9. 9.
    Cordy, M., Classen, A., Heymans, P., Schobbens, P., Legay, A.: ProVeLines: a product line of verifiers for software product lines. In: 17th International Software Product Line Conference Co-located workshops (SPLC), pp. 141–146. ACM (2013)Google Scholar
  10. 10.
    Damiani, F., Schaefer, I.: Family-based analysis of type safety for delta-oriented software product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 193–207. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34026-0_15 CrossRefGoogle Scholar
  11. 11.
    Dastgeer, U., Kessler, C.W.: Performance-aware composition framework for GPU-based systems. J. Supercomput. 71(12), 4646–4662 (2015)CrossRefGoogle Scholar
  12. 12.
    Devroey, X., Perrouin, G., Cordy, M., Samih, H., Legay, A., Schobbens, P., Heymans, P.: Statistical prioritization for software product line testing: an experience report. Softw. Syst. Model. 16(1), 153–171 (2017)CrossRefGoogle Scholar
  13. 13.
    Donaldson, A.F., Kroening, D., Rümmer, P.: Automatic analysis of scratch-pad memory code for heterogeneous multicore processors. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 280–295. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12002-2_24 CrossRefGoogle Scholar
  14. 14.
    Dubslaff, C., Baier, C., Klüppelholz, S.: Probabilistic model checking for feature-oriented systems. Trans. Asp.-Oriented Softw. Dev. 12, 180–220 (2015)Google Scholar
  15. 15.
    Wentzlaff, D., Griffin, P., Hoffmann, H., Bao, L., Edwards, B., Ramey, C., Mattina, M., Miao, C.-C., Brown III, J.F., Agarwal, A.: On-chip interconnection architecture of the tile processor. IEEE Micro 27, 15–31 (2007)CrossRefGoogle Scholar
  16. 16.
    Gries, M., Hoffmann, U., Konow, M., Riepen, M.: SCC: a flexible architecture for many-core platform research. Comput. Sci. Eng. 13(6), 79–83 (2011)CrossRefGoogle Scholar
  17. 17.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22110-1_47 CrossRefGoogle Scholar
  18. 18.
    Lungu, A., Bose, P., Sorin, D.J., German, S., Janssen, G.: Multicore power management: ensuring robustness via early-stage formal verification. In: 7th ACM/IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE), pp. 78–87. IEEE (2009)Google Scholar
  19. 19.
    Paolucci, P.S., Jerraya, A.A., Leupers, R., Thiele, L., Vicini, P.: SHAPES: a tiled scalable software hardware architecture platform for embedded systems. In: 4th International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 167–172. ACM (2006)Google Scholar
  20. 20.
    Parker, D.: Implementation of symbolic model checking for probabilistic systems. Ph.D. thesis, University of Birmingham (2002)Google Scholar
  21. 21.
    PRISM model checker.
  22. 22.
    Smit, G.J.M., Kokkeler, A.B.J., Wolkotte, P.T., Hölzenspies, P.K.F., van de Burgwal, M.D., Heysters, P.M.: The chameleon architecture for streaming DSP applications. EURASIP J. Embed. Syst. 2007 (2007). Article ID 078082Google Scholar
  23. 23.
    Taylor, M.B., Kim, J., Miller, J., Wentzlaff, D., Ghodrat, F., Greenwald, B., Hoffman, H., Johnson, P., Lee, J.-W., Lee, W., Ma, A., Saraf, A., Seneski, M., Shnidman, N., Strumpen, V., Frank, M., Amarasinghe, S., Agarwal, A.: The raw microprocessor: a computational fabric for software circuits and general-purpose programs. IEEE Micro 22(2), 25–35 (2002)CrossRefGoogle Scholar
  24. 24.
    ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Using FMC for family-based analysis of software product lines. In: 19th International Conference on Software Product Line (SPLC), pp. 432–439. ACM (2015)Google Scholar
  25. 25.
    ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: Statistical model checking for product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 114–133. Springer, Cham (2016). doi: 10.1007/978-3-319-47166-2_8 CrossRefGoogle Scholar
  26. 26.
    Thüm, T.: Product-line specification and verification with feature-oriented contracts. Ph.D. thesis, Otto von Guericke University Magdeburg (2015)Google Scholar
  27. 27.
    Thüm, T., Schaefer, I., Hentschel, M., Apel, S.: Family-based deductive verification of software product lines. In: Generative Programming and Component Engineering (GPCE), pp. 11–20. ACM (2012)Google Scholar
  28. 28.
    Vajda, A.: Programming Many-Core Chips. Springer, New York (2011)CrossRefGoogle Scholar
  29. 29.
    Velev, M.N., Gao, P.: Formal verification of safety of polymorphic heterogeneous multi-core architectures. In: 15th International Symposium on Quality Electronic Design (ISQED), pp. 611–617. IEEE (2014)Google Scholar
  30. 30.
    Völp, M., Klüppelholz, S., Castrillon, J., Härtig, H., Asmussen, N., Aßmann, U., Baader, F., Baier, C., Fettweis, G., Fröhlich, J., Goens, A., Haas, S., Habich, D., Hasler, M., Huismann, I., Karnagel, T., Karol, S., Lehner, W., Leuschner, L., Lieber, M., Ling, S., Märcker, S., Mey, J., Nagel, W., Nöthen, B., Penaloza, R., Raitza, M., Stiller, J., Ungethüm, A., Voigt, A.: The orchestration stack: the impossible task of designing software for unknown future post-CMOS hardware. In: Proceedings of the 1st Workshop on Post-Moore’s Era Supercomputing (PMES) (2016, accepted for publication)Google Scholar
  31. 31.
    Wilhelm, R., Reineke, J.: Embedded systems: many cores - many problems. In: 7th IEEE International Symposium on Industrial Embedded Systems (SIES), pp. 176–180. IEEE (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Theoretical Computer ScienceTechnische Universität DresdenDresdenGermany

Personalised recommendations