Advertisement

The Cost of Exactness in Quantitative Reachability

  • Krishnendu Chatterjee
  • Laurent DoyenEmail author
  • Thomas A. Henzinger
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10460)

Abstract

In the analysis of reactive systems a quantitative objective assigns a real value to every trace of the system. The value decision problem for a quantitative objective requires a trace whose value is at least a given threshold, and the exact value decision problem requires a trace whose value is exactly the threshold. We compare the computational complexity of the value and exact value decision problems for classical quantitative objectives, such as sum, discounted sum, energy, and mean-payoff for two standard models of reactive systems, namely, graphs and graph games.

References

  1. 1.
    Andersson, D.: An improved algorithm for discounted payoff games. In: Proceedings of 11th ESSLLI Student Session, pp. 91–98 (2006)Google Scholar
  2. 2.
    Blondin, M., Finkel, A., Göller, S., Haase, C., McKenzie, P.: Reachability in two-dimensional vector addition systems with states is PSPACE-complete. In: Proceedings of LICS: Symposium on Logic in Computer Science, pp. 32–43. IEEE Computer Society (2015)Google Scholar
  3. 3.
    Boker, U., Henzinger, T.A., Otop, J.: The target discounted-sum problem. In: Proceeings of LICS: Symposium on Logic in Computer Science, pp. 750–761. IEEE Computer Society (2015)Google Scholar
  4. 4.
    Bonet, B., Geffner, H.: Solving POMDPs: RTDP-Bel vs. point-based algorithms. In: Proceedings of IJCAI: International Joint Conference on Artificial Intelligence, pp. 1641–1646 (2009)Google Scholar
  5. 5.
    Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85778-5_4 CrossRefGoogle Scholar
  6. 6.
    Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addition systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 478–489. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14162-1_40 CrossRefGoogle Scholar
  7. 7.
    Brihaye, T., Geeraerts, G., Haddad, A., Monmege, B.: To reach or not to reach? efficient algorithms for total-payoff games. In: Proceedings of CONCUR: Concurrency Theory. LIPIcs, vol. 42, pp. 297–310. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  8. 8.
    Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.-F.: Faster algorithms for mean-payoff games. Formal Methods Syst. Des. 38(2), 97–118 (2011)CrossRefzbMATHGoogle Scholar
  9. 9.
    Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-45212-6_9 CrossRefGoogle Scholar
  10. 10.
    Chatterjee, K., Chmelik, M.: Indefinite-horizon reachability in Goal-DEC-POMDPs. In: Proceedings of ICAPS: International Conference on Automated Planning and Scheduling, pp. 88–96. AAAI Press (2016)Google Scholar
  11. 11.
    Chatterjee, K., Chmelik, M., Gupta, R., Kanodia, A.: Optimal cost almost-sure reachability in POMDPs. Artif. Intell. 234, 26–48 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chatterjee, K., Forejt, V., Wojtczak, D.: Multi-objective discounted reward verification in graphs and MDPs. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 228–242. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45221-5_17 CrossRefGoogle Scholar
  13. 13.
    Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with multiple objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 325–336. Springer, Heidelberg (2006). doi: 10.1007/11672142_26 CrossRefGoogle Scholar
  14. 14.
    Chatterjee, K., Velner, Y.: Hyperplane Separation technique for multidimensional mean-payoff games. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 500–515. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40184-8_35 CrossRefGoogle Scholar
  15. 15.
    Chen, T., Forejt, V., Kwiatkowska, M., Simaitis, A., Trivedi, A., Ummels, M.: Playing stochastic games precisely. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 348–363. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32940-1_25 CrossRefGoogle Scholar
  16. 16.
    Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J. Game Theory 8(2), 109–113 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer-Verlag, Heidelberg (1997)zbMATHGoogle Scholar
  18. 18.
    Filiot, E., Gentilini, R., Raskin, J.-F.: Quantitative languages defined by functional automata. Logical Methods Comput. Sci. 11(3) (2015)Google Scholar
  19. 19.
    Gurvich, V.A., Karzanov, A.V., Khachiyan, L.G.: Cyclic games and an algorithm to find minimax cycle means in directed graphs. USSR Comput. Math. Math. Phy. 28(5), 85–91 (1988)CrossRefzbMATHGoogle Scholar
  20. 20.
    Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in succinct and parametric one-counter automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 369–383. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04081-8_25 CrossRefGoogle Scholar
  21. 21.
    Hansen, T.D., Miltersen, P.B., Zwick, U.: Strategy iteration is strongly polynomial for 2-player turn-based stochastic games with a constant discount factor. J. ACM 60(1), 1:1–1:16 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hunter, P.: Reachability in succinct one-counter games. In: Bojańczyk, M., Lasota, S., Potapov, I. (eds.) RP 2015. LNCS, vol. 9328, pp. 37–49. Springer, Cham (2015). doi: 10.1007/978-3-319-24537-9_5 CrossRefGoogle Scholar
  23. 23.
    Hunter, P., Raskin, J.-F.: Quantitative games with interval objectives. In: Proceedings of FSTTCS, vol. 29 of LIPIcs, pp. 365–377. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014)Google Scholar
  24. 24.
    Jurdziński, M., Lazić, R., Schmitz, S.: Fixed-dimensional energy games are in pseudo-polynomial time. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 260–272. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47666-6_21 CrossRefGoogle Scholar
  25. 25.
    Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete Math. 23, 309–311 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nykänen, M., Ukkonen, E.: The exact path length problem. J. Algorithms 42(1), 41–53 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Puterman, M.L.: Markov Decision Processes. Wiley, Hoboken (1994)CrossRefzbMATHGoogle Scholar
  28. 28.
    Reichert, J.: On the complexity of counter reachability games. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp. 196–208. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41036-9_18 CrossRefGoogle Scholar
  29. 29.
    Velner, Y., Chatterjee, K., Doyen, L., Henzinger, T.A., Rabinovich, A.M., Raskin, J.-F.: The complexity of multi-mean-payoff and multi-energy games. Inf. Comput. 241, 177–196 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158(1&2), 343–359 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Krishnendu Chatterjee
    • 1
  • Laurent Doyen
    • 2
    Email author
  • Thomas A. Henzinger
    • 1
  1. 1.IST AustriaKlosterneuburgAustria
  2. 2.CNRS & LSV, ENS Paris-SaclayCachanFrance

Personalised recommendations