Simulation of Reflection and Transmission Properties of Multiperforated Acoustic Liners

  • Adrien SeminEmail author
  • Anastasia Thöns-Zueva
  • Kersten Schmidt
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 26)


In this paper we study the fundamental and higher-order modes propagation in a cylindrical acoustic duct with a multi-perforated liner section. This study relies on an established approximate model that is mathematically verified by a multiscale analysis and that takes the presence of the liner into account through transmission conditions. We simulate the reflection and transmission behaviour by an hp-adaptive finite element method that effectively resolves the solution in presence of strong singularities at the rim of the duct. Moreover, we introduce a new mode matching method based on the complete mode decomposition that depends in the liner section on the Rayleigh conductivity. It turns out that the mode matching method achieves similar accuracies with all propagating and just a number of evanescent modes.



The authors gratefully acknowledge the financial support from the Einstein Foundation Berlin (grant number IPF-2011-98) and the research center MATHEON through the Einstein Center for Mathematics Berlin (project MI-2) and are thankful to the fruitful exchange with the DLR Berlin.


  1. 1.
    Bendali, A., Fares, M., Piot, E., Tordeux, S.: Mathematical justification of the rayleigh conductivity model for perforated plates in acoustics. SIAM J. Appl. Math. 73(19), 438–459 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Delourme, B., Schmidt, K., Semin, A.: On the homogenization of thin perforated walls of finite length. Asymptot. Anal. 97(3–4), 211–264 (2016). doi:10.3233/ASY-151350MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Delourme, B., Schmidt, K., Semin, A.: On the homogenization of the Helmholtz problem with thin perforated walls of finite length. arXiv:1611.06001 (2016)Google Scholar
  4. 4.
    Goldstein, C.: A finite element method for solving Helmholtz type equations in waveguides and other unbounded domains. Math. Comput. 39(160), 309–324 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ingard, U., Labate, S.: Acoustic circulation effects and the nonlinear impedance of orifices. J. Acoust. Soc. Am. 22(2), 211–218 (1950). doi:10.1121/1.1906591CrossRefGoogle Scholar
  6. 6.
    Lahiri, C.: Acoustic performance of bias flow liners in gas turbine combustors. PhD thesis (2014). doi:10.14279/depositonce-4270Google Scholar
  7. 7.
    Laurens, S., Tordeux, S., Bendali, A., Fares, M., Kotiuga, P.R.: Lower and upper bounds for the Rayleigh conductivity of a perforated plate. ESAIM: Math. Model. Numer. Anal. 47(6), 1691–1712 (2013). doi:10.1051/m2an/2013082MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Rayleigh, J.W.S.: The Theory of Sound. In: Dover Classics of Science and Mathematics, vol. 2. Dover, New York (1945)Google Scholar
  9. 9.
    Weng, C., Bake, F.: An analytical model for boundary layer attenuation of acoustic modes in rigid circular ducts with uniform flow. Acta Acust. united Acust. 102, 1138–1141 (2016). doi:10.3813/AAA.919025CrossRefGoogle Scholar
  10. 10.
    Weng, C., Otto, C., Peerlings, L., Enghardt, L., Bake, F.: Experimental investigation of sound field decomposition with higher order modes in rectangular ducts. In: AIAA/CEAS Aeroacoustics Conference (2016). doi:10.2514/6.2016-3035Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Adrien Semin
    • 1
    Email author
  • Anastasia Thöns-Zueva
    • 1
  • Kersten Schmidt
    • 1
    • 2
  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany
  2. 2.Institut für MathematikBrandenburgische Technische Universität Cottbus-SenftenbergCottbusGermany

Personalised recommendations