Nanoelectronic Coupled Problem Solutions: Uncertainty Quantification of RFIC Interference

  • Piotr Putek
  • Rick Janssen
  • Jan Niehof
  • E. Jan W. ter MatenEmail author
  • Roland Pulch
  • Bratislav Tasić
  • Michael Günther
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 26)


Due to the key trends on the market of RF products, modern electronics systems involved in communication and identification sensing technology impose requiring constraints on both reliability and robustness of components. The increasing integration of various systems on a single die yields various on-chip coupling effects, which need to be investigated in the early design phases of Radio Frequency Integrated Circuit (RFIC) products. Influence of manufacturing tolerances within the continuous down-scaling process affects the output characteristics of electronic devices. Consequently, this results in a random formulation of a direct problem, whose solution leads to robust and reliable simulations of electronics products. Therein, the statistical information can be included by a response surface model, obtained by the Stochastic Collocation Method (SCM) with Polynomial Chaos (PC). In particular, special emphasis is given to both the means of the gradient of the output characteristics with respect to parameter variations and to the variance-based sensitivity, which allows for quantifying impact of particular parameters to the variance. We present results for the Uncertainty Quantification of an integrated RFCMOS transceiver design.



The nanoCOPS (Nanoelectronic COupled Problems Solutions) project [12] is supported by the European Union in the FP7-ICT-2013-11 Program under the grant agreement number 619166,


  1. 1.
    Dakota 6.2., Sandia National Laboratories (2015)
  2. 2.
    Di Bucchianico, A., ter Maten, E.J.W., Pulch, R., Janssen, R., Niehof, J., Hanssen, J., Kapora, S.: Robust and efficient uncertainty quantification and validation of RFIC isolation. Radioengineering 23, 308–318 (2014)Google Scholar
  3. 3.
    Gharpurey, R., Meyer, R.G.: Modeling and analysis of substrate coupling in integrated circuits. IEEE J. Solid-State Circuits 31(3), 344–353 (1996)CrossRefGoogle Scholar
  4. 4.
    Kapora, S., Hanssen, M., Niehof, J., Sandifort, Q.: Methodology for interference analysis during early design stages of high-performance mixed-signal ICs. In: Proceedings of 2015 10th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo), Edinburgh, 10–13 November, pp. 67–71 (2015)Google Scholar
  5. 5.
    Niehof, J., van Sinderen, J.: Preventing RFIC interference issues: A modeling methodology for floorplan development and verification of isolation- and grounding strategies. In: Proceedings SPI-2011, 15th IEEE Workshop on Signal Propagation on Interconnects, Naples, pp. 11–14 (2011)Google Scholar
  6. 6.
    Pulch, R., ter Maten, E.J.W., Augustin, F.: Sensitivity analysis and model order reduction for random linear dynamical systems. Math. Comput. Simulat. 111, 80–95 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Putek, P., Meuris, P., Günther, M., ter Maten, E.J.W., Pulch, R., Wieers, A., Schoenmaker, W.: Uncertainty quantification in electro-thermal coupled problems based on a power transistor device. IFAC-PapersOnLine 48, 938–939 (2015)CrossRefGoogle Scholar
  8. 8.
    Putek, P., Janssen, R., Niehof, J., ter Maten, E.J.W., Pulch, R., Günther, M.: Robust optimization of an RFIC isolation problem under uncertainties. In: Langer, U., Amrhein, W., Zulehner, W. (eds.) Scientific Computing in Electrical Engineering (SCEE 2016). Series Mathematics in Industry. Springer (2017)Google Scholar
  9. 9.
    Putek, P., Meuris, P., Pulch, R., ter Maten, E.J.W., Günther, M., Schoenmaker, W., Deleu, F., Wieers, A.: Shape optimization of a power MOS device under uncertainties. In: Proceedings DATE-2016, Design, Automation and Test in Europe, Dresden, pp. 319–324 (2016)Google Scholar
  10. 10.
    Putek, P., Meuris, P., Pulch, R., ter Maten, E.J.W., Schoenmaker, W., Günther, M.: Uncertainty quantification for robust topology optimization of power transistor devices. IEEE Trans. Magn. 52(3), 1700104 (2016)CrossRefGoogle Scholar
  11. 11.
    Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Rel. Eng. Syst. Saf. 93(7), 964–979 (2008)CrossRefGoogle Scholar
  12. 12.
    ter Maten, E.J.W., et al.: Nanoelectronic coupled problems solutions – nanoCOPS: modelling, multirate, model order reduction, uncertainty quantification, fast fault simulation. J. Math. Ind. 7(2), 19 pp. (2016)Google Scholar
  13. 13.
    Xiu, D.: Numerical Methods for Stochastic Computations – A Spectral Method Approach. Princeton University Press, Princeton (2010)zbMATHGoogle Scholar
  14. 14.
    Xiu, D., Hesthaven, J.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27, 1118–1139 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Piotr Putek
    • 1
    • 2
  • Rick Janssen
    • 3
  • Jan Niehof
    • 3
  • E. Jan W. ter Maten
    • 4
    • 5
    Email author
  • Roland Pulch
    • 6
  • Bratislav Tasić
    • 3
  • Michael Günther
    • 4
  1. 1.Bergische Universität WuppertalChair of Applied Mathematics and Numerical AnalysisWuppertalGermany
  2. 2.Ernst-Moritz-Arndt-Universität GreifswaldInstitute for Mathematics and Computer ScienceGreifswaldGermany
  3. 3.NXP Semiconductors B.V.EindhovenThe Netherlands
  4. 4.Bergische Universität WuppertalChair of Applied Mathematics and Numerical AnalysisWuppertalGermany
  5. 5.Eindhoven University of TechnologyChair of Mathematics and Computer Science (CASA)EindhovenThe Netherlands
  6. 6.Ernst-Moritz-Arndt-Universität GreifswaldInstitute for Mathematics and Computer ScienceGreifswaldGermany

Personalised recommendations