CSI: New Evidence – A Progress Report

  • Julian NageleEmail author
  • Bertram Felgenhauer
  • Aart Middeldorp
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10395)


CSI is a strong automated confluence prover for rewrite systems which has been in development since 2010. In this paper we report on recent extensions that make CSI more powerful, secure, and useful. These extensions include improved confluence criteria but also support for uniqueness of normal forms. Most of the implemented techniques produce machine-readable proof output that can be independently verified by an external tool, thus increasing the trust in CSI. We also report on CSI\(\mathbf {\hat{~}}\)oho, a tool built on the same framework and similar ideas as CSI that automatically checks confluence of higher-order rewrite systems.



We thank Sarah Winkler for contributing code and expertise related to AC termination and AC critical pairs.


  1. 1.
    Aoto, T., Hirokawa, N., Nagele, J., Nishida, N., Zankl, H.: Confluence competition 2015. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp. 101–104. Springer, Cham (2015). doi: 10.1007/978-3-319-21401-6_5 CrossRefGoogle Scholar
  2. 2.
    Aoto, T., Toyama, Y.: A reduction-preserving completion for proving confluence of non-terminating term rewriting systems. LMCS 8(1: 31), 1–29 (2012). doi: 10.2168/LMCS-8(1:31)2012 MathSciNetzbMATHGoogle Scholar
  3. 3.
    Aoto, T., Toyama, Y.: Ground confluence prover based on rewriting induction. In: Proceedings of 1st FSCD. LIPIcs, vol. 52, pp. 33: 1–33: 12 (2016). doi: 10.4230/LIPIcs.FSCD.2016.33
  4. 4.
    Aoto, T., Toyama, Y., Uchida, K.: Proving confluence of term rewriting systems via persistency and decreasing diagrams. In: Dowek, G. (ed.) RTA 2014. LNCS, vol. 8560, pp. 46–60. Springer, Cham (2014). doi: 10.1007/978-3-319-08918-8_4 Google Scholar
  5. 5.
    Aoto, T., Yoshida, J., Toyama, Y.: Proving confluence of term rewriting systems automatically. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 93–102. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02348-4_7 CrossRefGoogle Scholar
  6. 6.
    Appel, C., van Oostrom, V., Simonsen, J.G.: Higher-order (non-)modularity. In: Proceedings of 21st RTA. LIPIcs, vol. 6, pp. 17–32 (2010). doi: 10.4230/LIPIcs.RTA.2010.17
  7. 7.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, New York (1998)CrossRefzbMATHGoogle Scholar
  8. 8.
    Felgenhauer, B.: Deciding confluence of ground term rewrite systems in cubic time. In: Proceedings of 23rd RTA. LIPIcs, vol. 15, pp. 165–175 (2012). doi: 10.4230/LIPIcs.RTA.2012.165
  9. 9.
    Felgenhauer, B.: Efficiently deciding uniqueness of normal forms and unique normalization for ground TRSs. In: Proceedings of 5th IWC, pp. 16–20 (2016)Google Scholar
  10. 10.
    Felgenhauer, B., Middeldorp, A., Zankl, H., Oostrom, V.O.: Layer systems for proving confluence. ACM TOCL 16(2: 14), 1–32 (2015). doi: 10.1145/2710017 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Felgenhauer, B., Thiemann, R.: Reachability analysis with state-compatible automata. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 347–359. Springer, Cham (2014). doi: 10.1007/978-3-319-04921-2_28 CrossRefGoogle Scholar
  12. 12.
    Huet, G.: Confluent reductions: Abstract properties and applications to term rewriting systems. JACM 27(4), 797–821 (1980). doi: 10.23638/LMCS-13(2:4)2017 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equations. SIAM J. Comput. 15(4), 1155–1194 (1986). doi: 10.1137/0215084 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kahrs, S., Smith, C.: Non-\(\omega \)-overlapping TRSs are UN. In: Proceedings of 1st FSCD. LIPIcs, vol. 52, pp. 22: 1–22: 17 (2016). doi: 10.4230/LIPIcs.FSCD.2016.22
  15. 15.
    Klein, D., Hirokawa, N.: Confluence of non-left-linear TRSs via relative termination. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 258–273. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28717-6_21 CrossRefGoogle Scholar
  16. 16.
    Klop, J.: Combinatory reduction systems. Ph.D. thesis, Utrecht University (1980)Google Scholar
  17. 17.
    Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970)Google Scholar
  18. 18.
    Kop, C.: Higher order termination. Ph.D. thesis, Vrije Universiteit, Amsterdam (2012)Google Scholar
  19. 19.
    Kusakari, K., Isogai, Y., Sakai, M., Blanqui, F.: Static dependency pair method based on strong computability for higher-order rewrite systems. IEICE TIS 92–D(10), 2007–2015 (2009)Google Scholar
  20. 20.
    Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. TCS 192(1), 3–29 (1998). doi: 10.1016/S0304-3975(97)00143-6 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Miller, D.: A logic programming language with lambda-abstraction, function variables, and simple unification. JLP 1(4), 497–536 (1991). doi: 10.1093/logcom/1.4.497 MathSciNetzbMATHGoogle Scholar
  22. 22.
    Nagele, J., Felgenhauer, B., Middeldorp, A.: Improving automatic confluence analysis of rewrite systems by redundant rules. In: Proceedings of 26th RTA. LIPIcs, vol. 36, pp. 257–268 (2015). doi: 10.4230/LIPIcs.RTA.2015.257
  23. 23.
    Nagele, J., Felgenhauer, B., Zankl, H.: Certifying confluence proofs via relative termination and rule labeling. LMCS (to appear) (2017)Google Scholar
  24. 24.
    Nagele, J., Middeldorp, A.: Certification of classical confluence results for left-linear term rewrite systems. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 290–306. Springer, Cham (2016). doi: 10.1007/978-3-319-43144-4_18 CrossRefGoogle Scholar
  25. 25.
    Nagele, J., Thiemann, R.: Certification of confluence proofs using CeTA. In: Proceedings of 3rd IWC, pp. 19–23 (2014)Google Scholar
  26. 26.
    Nelson, G., Oppen, D.: Fast decision procedures based on congruence closure. JACM 27(2), 356–364 (1980). doi: 10.1145/322186.322198 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Nipkow, T.: Higher-order critical pairs. In: Proceedings of 6th LICS, pp. 342–349 (1991). doi: 10.1109/LICS.1991.151658
  28. 28.
    Nipkow, T.: Functional unification of higher-order patterns. In: Proceedings of 8th LICS, pp. 64–74 (1993). doi: 10.1109/LICS.1993.287599
  29. 29.
    van Oostrom, V.: Developing developments. TCS 175(1), 159–181 (1997). doi: 10.1016/S0304-3975(96)00173-9 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    van Oostrom, V., Raamsdonk, F.: Weak orthogonality implies confluence: the higher-order case. In: Nerode, A., Matiyasevich, Y.V. (eds.) LFCS 1994. LNCS, vol. 813, pp. 379–392. Springer, Heidelberg (1994). doi: 10.1007/3-540-58140-5_35 CrossRefGoogle Scholar
  31. 31.
    Oyamaguchi, M., Hirokawa, N.: Confluence and critical-pair-closing systems. In: Proceedings of 3rd IWC, pp. 29–33 (2014)Google Scholar
  32. 32.
    Peterson, G.E., Stickel, M.E.: Complete sets of reductions for some equational theories. JACM 28(2), 233–264 (1981). doi: 10.1145/322248.322251 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    van Raamsdonk, F.: On termination of higher-order rewriting. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 261–275. Springer, Heidelberg (2001). doi: 10.1007/3-540-45127-7_20 CrossRefGoogle Scholar
  34. 34.
    Regnier, L.: Une équivalence sur les lambda-termes. TCS 126(2), 281–292 (1994). doi: 10.1016/0304-3975(94)90012-4 CrossRefzbMATHGoogle Scholar
  35. 35.
    Rosen, B.: Tree-manipulating systems and Church-Rosser theorems. JACM 20(1), 160–187 (1973). doi: 10.1145/321738.321750 MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Rubio, A.: A fully syntactic AC-RPO. I&C 178(2), 515–533 (2002). doi: 10.1006/inco.2002.3158 MathSciNetzbMATHGoogle Scholar
  37. 37.
    Sakai, M., Oyamaguchi, M., Ogawa, M.: Non-E-overlapping, weakly shallow, and non-collapsing TRSs are confluent. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 111–126. Springer, Cham (2015). doi: 10.1007/978-3-319-21401-6_7 CrossRefGoogle Scholar
  38. 38.
    Shintani, K., Hirokawa, N.: CoLL: A confluence tool for left-linear term rewrite systems. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 127–136. Springer, Cham (2015). doi: 10.1007/978-3-319-21401-6_8 CrossRefGoogle Scholar
  39. 39.
    Sternagel, C., Thiemann, R.: Formalizing Knuth-Bendix orders and Knuth-Bendix completion. In: Proceedings of 24th RTA. LIPIcs, vol. 21, pp. 287–302 (2013).doi: 10.4230/LIPIcs.RTA.2013.287
  40. 40.
    Sternagel, C., Thiemann, R.: The certification problem format. In: Proceedings of 11th UITP. EPTCS, vol. 167, pp. 61–72 (2014). doi: 10.4204/EPTCS.167.8
  41. 41.
    Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 452–468. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03359-9_31 CrossRefGoogle Scholar
  42. 42.
    Toyama, Y.: Commutativity of term rewriting systems. In: Fuchi, K., Kott, L. (eds.) Programming of Future Generation Computers II, pp. 393–407. North-Holland Publishing, North Holland (1988)Google Scholar
  43. 43.
    Toyama, Y., Oyamaguchi, M.: Church-Rosser property and unique normal form property of non-duplicating term rewriting systems. In: Proceedings of the 4th CTRS withDershowitz N., Lindenstrauss N. (eds.) CTRS 1994. LNCS, vol. 968 (1995). doi: 10.1007/3-540-60381-6_19
  44. 44.
    Zankl, H., Felgenhauer, B., Middeldorp, A.: CSI – a confluence tool. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 499–505. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22438-6_38 CrossRefGoogle Scholar
  45. 45.
    Zankl, H., Felgenhauer, B., Middeldorp, A.: Labelings for decreasing diagrams. JAR 54(2), 101–133 (2015). doi: 10.1007/s10817-014-9316-y MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Julian Nagele
    • 1
    Email author
  • Bertram Felgenhauer
    • 1
  • Aart Middeldorp
    • 1
  1. 1.Department of Computer ScienceUniversity of InnsbruckInnsbruckAustria

Personalised recommendations