DepQBF 6.0: A Search-Based QBF Solver Beyond Traditional QCDCL

  • Florian LonsingEmail author
  • Uwe Egly
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10395)


We present the latest major release version 6.0 of the quantified Boolean formula (QBF) solver DepQBF, which is based on QCDCL. QCDCL is an extension of the conflict-driven clause learning (CDCL) paradigm implemented in state of the art propositional satisfiability (SAT) solvers. The Q-resolution calculus (QRES) is a QBF proof system which underlies QCDCL. QCDCL solvers can produce QRES proofs of QBFs in prenex conjunctive normal form (PCNF) as a byproduct of the solving process. In contrast to traditional QCDCL based on QRES, DepQBF 6.0 implements a variant of QCDCL which is based on a generalization of QRES. This generalization is due to a set of additional axioms and leaves the original Q-resolution rules unchanged. The generalization of QRES enables QCDCL to potentially produce exponentially shorter proofs than the traditional variant. We present an overview of the features implemented in DepQBF and report on experimental results which demonstrate the effectiveness of generalized QRES in QCDCL.


  1. 1.
    Ayari, A., Basin, D.: Qubos: Deciding quantified boolean logic using propositional satisfiability solvers. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 187–201. Springer, Heidelberg (2002). doi: 10.1007/3-540-36126-X_12 CrossRefGoogle Scholar
  2. 2.
    Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Formal Methods Syst. Des. 41(1), 45–65 (2012)CrossRefzbMATHGoogle Scholar
  3. 3.
    Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169. Springer, Cham (2014). doi: 10.1007/978-3-319-09284-3_12 Google Scholar
  4. 4.
    Beyersdorff, O., Blinkhorn, J.: Dependency schemes in QBF calculi: semantics and soundness. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 96–112. Springer, Cham (2016). doi: 10.1007/978-3-319-44953-1_7 CrossRefGoogle Scholar
  5. 5.
    Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: STACS. LIPIcs, vol. 30, pp. 76–89. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  6. 6.
    Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005). doi: 10.1007/11527695_5 CrossRefGoogle Scholar
  7. 7.
    Bogaerts, B., Janhunen, T., Tasharrofi, S.: SAT-to-SAT in QBFEval 2016. In: QBF Workshop. CEUR Workshop Proceedings, vol. 1719, pp. 63–70. (2016)Google Scholar
  8. 8.
    Bubeck, U., Kleine Büning, H.: Bounded universal expansion for preprocessing QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 244–257. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72788-0_24 CrossRefGoogle Scholar
  9. 9.
    Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate quantified boolean formulae. In: AAAI, pp. 262–267. AAAI Press/The MIT Press (1998)Google Scholar
  10. 10.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Egly, U., Kronegger, M., Lonsing, F., Pfandler, A.: Conformant planning as a case study of incremental QBF solving. Ann. Math. Artif. Intell. 80(1), 21–45 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: proof generation and strategy extraction in search-based QBF solving. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 291–308. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45221-5_21 CrossRefGoogle Scholar
  14. 14.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/Term resolution and learning in the evaluation of quantified boolean formulas. JAIR 26, 371–416 (2006)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for SAT and QSAT. JAIR 53, 127–168 (2015)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Janota, M.: On Q-resolution and CDCL QBF solving. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 402–418. Springer, Cham (2016). doi: 10.1007/978-3-319-40970-2_25 Google Scholar
  17. 17.
    Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. Artif. Intell. 234, 1–25 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution. Theor. Comput. Sci. 577, 25–42 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: IJCAI, pp. 325–331. AAAI Press (2015)Google Scholar
  20. 20.
    Kleine Büning, H., Bubeck, U.: Theory of quantified boolean formulas. In: Handbook of Satisfiability, FAIA, vol. 185, pp. 735–760. IOS Press (2009)Google Scholar
  21. 21.
    Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean formulas. Inf. Comput. 117(1), 12–18 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14186-7_12 CrossRefGoogle Scholar
  23. 23.
    Kullmann, O.: On a generalization of extended resolution. Discrete Appl. Math. 96–97, 149–176 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Letz, R.: Lemma and model caching in decision procedures for quantified boolean formulas. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS, vol. 2381, pp. 160–175. Springer, Heidelberg (2002). doi: 10.1007/3-540-45616-3_12 CrossRefGoogle Scholar
  25. 25.
    Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M.: Enhancing search-based QBF solving by dynamic blocked clause elimination. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 418–433. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48899-7_29 CrossRefGoogle Scholar
  26. 26.
    Lonsing, F., Biere, A.: DepQBF: a dependency-aware QBF solver. JSAT 7(2–3), 71–76 (2010)Google Scholar
  27. 27.
    Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–171. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14186-7_14 CrossRefGoogle Scholar
  28. 28.
    Lonsing, F., Egly, U.: Incremental QBF solving. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 514–530. Springer, Cham (2014). doi: 10.1007/978-3-319-10428-7_38 Google Scholar
  29. 29.
    Lonsing, F., Egly, U.: Incrementally computing minimal unsatisfiable cores of QBFs via a clause group solver API. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 191–198. Springer, Cham (2015). doi: 10.1007/978-3-319-24318-4_14 CrossRefGoogle Scholar
  30. 30.
    Lonsing, F., Egly, U.: DepQBF 6.0: A search-based QBF solver beyond traditional QCDCL. CoRR abs/1702.08256 (2017)., CADE 2017 proceedings version with appendix
  31. 31.
    Lonsing, F., Egly, U.: Evaluating QBF solvers: quantifier alternations matter. CoRR abs/1701.06612 (2017)., technical report
  32. 32.
    Lonsing, F., Egly, U., Seidl, M.: Q-resolution with generalized axioms. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 435–452. Springer, Cham (2016). doi: 10.1007/978-3-319-40970-2_27 Google Scholar
  33. 33.
    Lonsing, F., Egly, U., Van Gelder, A.: Efficient clause learning for quantified boolean formulas via QBF pseudo unit propagation. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 100–115. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39071-5_9 CrossRefGoogle Scholar
  34. 34.
    Lonsing, F., Seidl, M., Van Gelder, A.: The QBF gallery: behind the scenes. Artif. Intell. 237, 92–114 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Marin, P., Miller, C., Lewis, M.D.T., Becker, B.: Verification of partial designs using incremental QBF solving. In: DATE, pp. 623–628. IEEE (2012)Google Scholar
  36. 36.
    Marin, P., Narizzano, M., Pulina, L., Tacchella, A., Giunchiglia, E.: Twelve years of QBF evaluations: QSAT is PSPACE-hard and it shows. Fundam. Inform. 149(1–2), 133–158 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based certificate extraction for QBF. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 430–435. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31612-8_33 CrossRefGoogle Scholar
  38. 38.
    Peitl, T., Slivovsky, F., Szeider, S.: Long distance Q-resolution with dependency schemes. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 500–518. Springer, Cham (2016). doi: 10.1007/978-3-319-40970-2_31 Google Scholar
  39. 39.
    Pulina, L.: The ninth QBF solvers evaluation - preliminary report. In: Proceedings of the 4th International Workshop on Quantified Boolean Formulas QBF 2016. CEUR Workshop Proceedings, vol. 1719, pp. 1–13. (2016)
  40. 40.
    Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: FMCAD, pp. 136–143. IEEE (2015)Google Scholar
  41. 41.
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Samer, M., Szeider, S.: Backdoor sets of quantified boolean formulas. JAR 42(1), 77–97 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Scholl, C., Pigorsch, F.: The QBF solver AIGSolve. In: QBF Workshop. CEUR Workshop Proceedings, vol. 1719, pp. 55–62. (2016)Google Scholar
  44. 44.
    Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Handbook of Satisfiability, FAIA, vol. 185, pp. 131–153. IOS Press (2009)Google Scholar
  45. 45.
    Slivovsky, F., Szeider, S.: Computing resolution-path dependencies in linear time. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 58–71. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31612-8_6 CrossRefGoogle Scholar
  46. 46.
    Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes. Theor. Comput. Sci. 612, 83–101 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Van Gelder, A.: Variable independence and resolution paths for quantified boolean formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23786-7_59 CrossRefGoogle Scholar
  48. 48.
    Van Gelder, A.: Contributions to the theory of practical quantified boolean formula solving. In: Milano, M. (ed.) CP 2012. LNCS, pp. 647–663. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33558-7_47 CrossRefGoogle Scholar
  49. 49.
    Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability solver. In: ICCAD, pp. 442–449. ACM/IEEE Computer Society (2002)Google Scholar
  50. 50.
    Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts in quantified boolean formula evaluation. In: Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002). doi: 10.1007/3-540-46135-3_14 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Knowledge-Based Systems GroupVienna University of TechnologyViennaAustria

Personalised recommendations