Advertisement

An Integer Linear Programming Model for Binary Knapsack Problem with Dependent Item Values

  • Davoud MougoueiEmail author
  • David M. W. Powers
  • Asghar Moeini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10400)

Abstract

Binary Knapsack Problem (BKP) is to select a subset of items with the highest value while keeping the size within the capacity of the knapsack. This paper presents an Integer Linear Programming (ILP) model for a variation of BKP where the value of an item may depend on presence or absence of other items in the knapsack. Strengths of such Value-Related Dependencies are assumed to be imprecise and hard to specify. To capture this imprecision, we have proposed modeling value-related dependencies using fuzzy graphs and their algebraic structure. We have demonstrated through simulations that our proposed ILP model is scalable to large number of items.

Keywords

Binary knapsack problem Integer linear programming Dependency Value Fuzzy graph 

References

  1. 1.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Burkard, R.E.: Quadratic assignment problems. Eur. J. Oper. Res. 15(3), 283–289 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Carraway, R.L., Schmidt, R.L., Weatherford, L.R.: An algorithm for maximizing target achievement in the stochastic knapsack problem with normal returns. Naval Res. Logist. (NRL) 40(2), 161–173 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    De Kleer, J., Brown, J.S.: A qualitative physics based on confluences. Artif. Intell. 24(1), 7–83 (1984)CrossRefGoogle Scholar
  5. 5.
    Henig, M.I.: Risk criteria in a stochastic knapsack problem. Oper. Res. 38(5), 820–825 (1990)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Kivijärvi, H., Korhonen, P., Wallenius, J.: Operations research and its practice in finland. Interfaces 16(4), 53–59 (1986)CrossRefGoogle Scholar
  8. 8.
    Kusiak, A., Wang, J.: Dependency analysis in constraint negotiation. IEEE Trans. Syst. Man Cybern. 25(9), 1301–1313 (1995)CrossRefGoogle Scholar
  9. 9.
    Markowitz, H.M.: Foundations of portfolio theory. J. Financ. 46(2), 469–477 (1991)CrossRefGoogle Scholar
  10. 10.
    Mordeson, J.N., Nair, P.S.: Applications of fuzzy graphs. In: Mordeson, J.N., Nair, P.S. (eds.) Fuzzy Graphs and Fuzzy Hypergraphs. Studies in Fuzziness and Soft Computing, vol. 46, pp. 83–133. PhysicaVerlag HD, Heidelberg (2000). doi: 10.1007/978-3-7908-1854-3_3 CrossRefGoogle Scholar
  11. 11.
    Mougouei, D.: Factoring requirement dependencies in software requirement selection using graphs and integer programming. In: Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, pp. 884–887. ACM (2016)Google Scholar
  12. 12.
    Mougouei, D., Nurhayati, W.: A fuzzy-based technique for describing security requirements of intrusion tolerant systems. Int. J. Softw. Eng. Appl. 7(2), 99–112 (2013)Google Scholar
  13. 13.
    Mougouei, D., Powers, D.: Dependency-aware software release planning through mining user preferences. arXiv preprint arXiv:1702.05592 (2017)
  14. 14.
    Mougouei, D., Powers, D.M.W., Moeini, A.: Dependency-aware software release planning. In: Proceedings of the 39th International Conference on Software Engineering Companion, ICSE-C 2017, pp. 198–200. IEEE Press, Piscataway (2017)Google Scholar
  15. 15.
    Mougouei, D., Rahman, W.N.W.A., Almasi, M.M.: Measuring security of web services in requirement engineering phase. Int. J. Cyber-Secur. Digit. Forensics (IJCSDF) 1(2), 89–98 (2012)Google Scholar
  16. 16.
    Rosenfeld, A.: Fuzzy graphs. Fuzzy Sets Appl. 77, 95 (1975)zbMATHGoogle Scholar
  17. 17.
    Sharpe, W.F.: Portfolio Theory and Capital Markets. McGraw-Hill College, New York (1970)Google Scholar
  18. 18.
    Sniedovich, M.: Preference order stochastic knapsack problems: methodological issues. J. Oper. Res. Soc. 31(11), 1025–1032 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sprenger, J.: Foundations for a probabilistic theory of causal strength (2016)Google Scholar
  20. 20.
    Steinberg, E., Parks, M.: A preference order dynamic program for a knapsack problem with stochastic rewards. J. Oper. Res. Soc. 30(2), 141–147 (1979)CrossRefzbMATHGoogle Scholar
  21. 21.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, vol. 8. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  22. 22.
    Wellman, M.P., Derthick, M.: Formulation of Tradeoffs in Planning Under Uncertainty. Pitman, London (1990)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Davoud Mougouei
    • 1
    Email author
  • David M. W. Powers
    • 1
  • Asghar Moeini
    • 1
  1. 1.School of Computer Science, Engineering, and MathematicsFlinders UniversityAdelaideAustralia

Personalised recommendations