Advertisement

Modelling and Simulation with the Help of Digital Tools

Chapter
Part of the International Perspectives on the Teaching and Learning of Mathematical Modelling book series (IPTL)

Abstract

This chapter undertakes a theoretical and empirical examination of modelling with digital tools in mathematics instruction. First, modelling processes that integrate the use of digital tools are considered from a theoretical point of view. With the help of several significant examples, the varying added benefits of digital tools in modelling and simulations are clarified and put into perspective within the theoretical discussion. The relationship between modelling and simulation is also clarified. To complement the theoretical discussion, a qualitative, empirical study, examining what activities students actually perform when using a digital tool, Geogebra, for working on modelling tasks and where these activities are located within the modelling cycle is reported.

Keywords

Technology Digital tools Computer Qualitative empirical research 

References

  1. Blum, W., & Leiss, D. (2007). How do students and teachers deal with mathematical modelling problems? The example sugarloaf and the DISUM project. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12), education, engineering and economics (pp. 222–231). Chichester: Horwood.CrossRefGoogle Scholar
  2. Böer, H. (1993). Extremwertproblem Milchtüte. In W. Blum (Ed.), Anwendungen und Modellbildung im Mathematikunterricht (pp. 1–16). Hildesheim: Franzbecker.Google Scholar
  3. Bracke, M., Götz, T., & Siller, H.-S. (2015). Mit Hilfe der Mathematik zum Gipfel. Der Mathematikunterricht, 5, 7–13.Google Scholar
  4. Clements, R. R. (1984). The use of the simulation and case study techniques in the teaching of mathematical modelling. In J. S. Berry, D. N. Burghes, I. D. Huntley, D. J. G. Jones, & A. O. Moscardini (Eds.), Teaching and applying mathematical modelling (pp. 316–324). Chichester: Horwood.Google Scholar
  5. Daher, W., & Shahbari, A. (2015). Pre-service teachers’ modelling processes through engagement with model eliciting activities with a technological tool. International Journal of Science and Mathematics Education, 13(1), 25–46.CrossRefGoogle Scholar
  6. Deuber, R. (2005). Lebenszyklus einer Weissblechdose – Vom Feinblech zur versandfertigen Dose. Resource document. SwissEduc. http://www.swisseduc.ch/chemie/wbd/docs/modul2.pdf. Accessed 12 Sept 2015.
  7. Geiger, V. (2011). Factors affecting teachers’ adoption of innovative practices with technology and mathematical modelling. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 305–314). Dordrecht: Springer.CrossRefGoogle Scholar
  8. Greefrath, G. (2011). Using technologies: New possibilities of teaching and learning modelling – Overview. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillmann (Eds.), Trends in teaching and learning of mathematical modelling (pp. 301–304). Dordrecht: Springer.CrossRefGoogle Scholar
  9. Greefrath, G., & Weigand, H.-G. (2012). Simulieren: Mit Modellen experimentieren. Mathematik Lehren, 174, 2–6.Google Scholar
  10. Greefrath, G., & Weitendorf, J. (2013). Modellieren mit digitalen Werkzeugen. In R. Borromeo Ferri, G. Greefrath, & G. Kaiser (Eds.), Mathematisches Modellieren für Schule und Hochschule. Theoretische und didaktische Hintergründe (pp. 181–201). Wiesbaden: Springer Spektrum.CrossRefGoogle Scholar
  11. KMK. (2015). Bildungsstandards im Fach Mathematik für die Allgemeine Hochschulreife. Bonn: Wolter Kluwer.Google Scholar
  12. Krüger, S. (1974). Simulation: Grundlagen, Techniken, Anwendungen. Berlin: De Gruyter.Google Scholar
  13. Laakmann, H. (2005). Die Piratenaufgabe – verschieden darstellen, verschieden bearbeiten. In B. Barzel, S. Hußmann, & T. Leuders (Eds.), Computer, Internet & Co. im Mathematikunterricht (pp. 86–93). Berlin: Cornelsen Scriptor.Google Scholar
  14. Maki, D., & Thompson, M. (2015). The mathematical modeling cycle. Resource document. Indiana University. http://www.indiana.edu/~hmathmod/modelmodel.html. Accessed 12 Sept 2015.
  15. Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI study (pp. 3–32). New York: Springer.CrossRefGoogle Scholar
  16. Ortlieb, C. P., Dresche, C. V., Gasser, I., & Günzel, S. (2009). Mathematische Modellierung: eine Einführung in zwölf Fallstudien. Wiesbaden: Vieweg + Teubner.Google Scholar
  17. Pollak, H. O. (1979). The interaction between mathematics and other school subjects. In UNESCO (Ed.), New trends in mathematics teaching IV (pp. 232–248). Paris: OECD.Google Scholar
  18. Savelsbergh, E. R., Drijvers, P. H. M., van de Giessen, C., Heck, A., Hooyman, K., Kruger, J., Michels, B., Seller, F., & Westra, R. H. V. (2008). Modelleren en computer-modellen in de β -vakken: advies op verzoek van de gezamenlijke β -vernieuwingscommissies. Utrecht: Freudenthal Instituut voor Didactiek van Wiskunde en Natuurwetenschappen.Google Scholar
  19. Siller, H.-S. (Ed.). (2015). Realitätsbezug im Mathematikunterricht, Der Mathematikunterricht, 5. Seelze: Friedrich Verlag.Google Scholar
  20. Siller, H.-S., & Greefrath, G. (2010). Mathematical modelling in class regarding to technology. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the sixth Congress of the European Society for Research in Mathematics Education (pp. 2136–2145). Lyon: INRP.Google Scholar
  21. Sonar, T. (2001). Angewandte Mathematik, Modellbildung und Informatik. Wiesbaden: Vieweg + Teubner.CrossRefGoogle Scholar
  22. Strauss, A., & Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and techniques. Newbury Park: Sage.Google Scholar
  23. Vehring. (2012). Mathematische Modellierung mit einer dynamischen Geometriesoftware. Eine empirische Untersuchung anhand der Piratenaufgabe (Masterarbeit). University of Münster, Germany.Google Scholar
  24. Weigand, H.-G., & Weth, T. (2002). Computer im Mathematikunterricht. Neue Wege zu alten Zielen. Heidelberg: Spektrum.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mathematics and Computer science, Institute of Education in Mathematics and Computer ScienceUniversity of MuensterMuensterGermany
  2. 2.Lehrstuhl für Didaktik der MathematikUniversität WürzburgWürzburgGermany

Personalised recommendations