Dynamic Logics of Imperfect Information: From Teams and Games to Transitions

Part of the Outstanding Contributions to Logic book series (OCTR, volume 12)


We introduce a new semantical formalism for logics of imperfect information, based on Game Logic (and, in particular, on van Benthem, Ghosh and Lu’s Concurrent Dynamic Game Logic). This new kind of semantics combines aspects from game theoretic semantics and from team semantics, and demonstrates how logics of imperfect information can be seen as languages for reasoning about games. Finally we show that, for a very expressive fragment of our language, a simpler semantics is available.



The author wishes to thank Jouko Väänänen for a number of useful suggestions and comments about previous versions of this work. Furthermore, the author thankfully acknowledges the support of the EUROCORES LogICCC LINT programme.


  1. 1.
    Abramsky S (2007) A compositional game semantics for multi-agent logics of partial information. In:  van Bentham J,  Gabbay D,  Lowe B (eds) Interactive logic of texts in logic and games,vol 1, Amsterdam University Press,pp 11–48Google Scholar
  2. 2.
    Abramsky S, Väänänen J (2008). From IF to BI, a tale of dependence and separation. ILLC Publications, PP–2008–27Google Scholar
  3. 3.
    Bradfield J (2000) Independence: Logics and concurrency. In: Clote P, Schwichtenberg H (eds) Computer science logic.Lecture notes in computer science,vol 1862, Springer, Berlin/Heidelberg, pp 247–261Google Scholar
  4. 4.
    Durand A, Kontinen J (2011) Hierarchies in dependence logic. CoRR, abs/1105.3324Google Scholar
  5. 5.
    Engström F (2010) Generalized quantifiers in dependence logic. DraftGoogle Scholar
  6. 6.
    Galliani P (2008) Game values and equilibria for undetermined sentences of dependence logic. MSc Thesis, ILLC Publications, MoL–2008–08Google Scholar
  7. 7.
    Galliani P (2011) Multivalued dependence logic and independence logic. In: Non-classical modal and predicate logicsGoogle Scholar
  8. 8.
    Galliani P (2012) Inclusion and exclusion dependencies in team semantics: on some logics of imperfect information. Annl Pure Appl Logic 163(1):68–84Google Scholar
  9. 9.
    Galliani P (2013) Epistemic operators and uniform definability in dependence logic.Studia logicaGoogle Scholar
  10. 10.
    Galliani P (2014) Transition semantics: the dynamics of dependence logic. Synthese 191(6):1249–1276Google Scholar
  11. 11.
    Grädel E, Väänänen J (2013) Dependence and independence. Studia logicaGoogle Scholar
  12. 12.
    Groenendijk J, Stokhof M (1991) Dynamic predicate logic. Linguist Philos 14(1):39–100Google Scholar
  13. 13.
    Hintikka J (1996) The principles of mathematics revisited. Cambridge University PressGoogle Scholar
  14. 14.
    Hintikka J, Kulas J (1983) The game of language: studies in game-theoretical semantics and its applications .D. Reidel Publishing CompanyGoogle Scholar
  15. 15.
    Hintikka J, Sandu G (1997) Game-theoretical semantics. In: van Benthem J,  Meulen A T (eds) Handbook of logic and language.Elsevier, pp 361–410Google Scholar
  16. 16.
    Hodges W (1997) Compositional semantics for a language of imperfect information. J Interest Group Pure Appl Logics 5(4):539–563Google Scholar
  17. 17.
    Kontinen J (2010) Coherence and computational complexity of quantifier-free dependence logic formulas. In: Kontinen J, Väänänen J (eds) Proceedings of dependence and independence in logic ESSLLI 2010, pp 58–77Google Scholar
  18. 18.
    Kontinen J, Nurmi V (2009) Team logic and second-order logic. In: Ono H, Kanazawa M, de Queiroz R (eds) Logic. Language, information and computation, of lecture notes in computer science,vol 5514, Springer, Berlin / Heidelberg, pp 230–241Google Scholar
  19. 19.
    Kontinen J, Väänänen J (2009) On definability in dependence logic. J Logic Lang Inf 3(18):317–332Google Scholar
  20. 20.
    Kontinen J, Väänänen J (2011) A remark on negation of dependence logic. Notre Dame J Formal Logic 52(1):55–65Google Scholar
  21. 21.
    Kuusisto A (2011) Logics of imperfect information without identity, TamPub Electronic PublicationsGoogle Scholar
  22. 22.
    Mann A L , Sandu G, Sevenster M (2011) A game-theoretic approach.Independence-friendly logic ,Cambridge University PressGoogle Scholar
  23. 23.
    Osborne Martin J , Rubinstein A (1994) A course in game theory. The MIT PressGoogle Scholar
  24. 24.
    Pauly M, Parikh R (2003) Game logic: an overview. Studia logica 75(2):165–182Google Scholar
  25. 25.
    Sevenster M, Sandu G (2010) Equilibrium semantics of languages of imperfect information. Annl Pure Appl Logic 161(5):618–631. The Third workshop on Games for Logic and Programming Languages (GaLoP), Galop 2008. ISSN 0168-0072,doi: 10.1016/j.apal.2009.07.019Google Scholar
  26. 26.
    Tulenheimo T(2009) Independence friendly logic. Stanford encyclopedia of philosophyGoogle Scholar
  27. 27.
    Väänänen J (2007) Dependence logic. Cambridge University PressGoogle Scholar
  28. 28.
    Väänänen J(2007) Team logic. In:  van Benthem J,  Gabbay D,  Löwe B (eds) Interactive logic. Selected papers from the 7th augustus de morgan workshop. Amsterdam University Press, pp 281–302Google Scholar
  29. 29.
    van Benthem J, Ghosh S, Liu F (2008) Modelling simultaneous games in dynamic logic. Synthese 165:247–268. ISSN 0039-7857Google Scholar
  30. 30.
    Yang F (2010) Expressing second-order sentences in intuitionistic dependence logic. In: Kontinen J, Väänänen J (eds) Proceedings of dependence and independence in logic (ESSLLI 2010), pp 118–132Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Free University of Bozen-BolzanoBolzanoItaly

Personalised recommendations