Fundamental Frameworks in Planetary Mapping: A Review

  • Henrik HargitaiEmail author
  • Konrad Willner
  • Trent Hare
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


In this chapter, we review basic concepts, measurements, and methods in mapping topographic and reflectance (image) data of planetary surfaces. This includes the definition of coordinate systems for each body, the identification of the shape of a planetary body, and the establishment of reference systems and reference bodies that are required to produce horizontally and vertically accurate representations of a planetary surface.


Reference surface Datum Coordinate Projection Geodetic control Block adjustment 



The authors are grateful to R. Kirk for the helpful discussions during the planning and reviewing of the manuscript and to P. Sidiropoulos who provided useful additions to the manuscript.


  1. Acton C (1996) Ancillary data services of NASA’s navigation and ancillary information facility. Planet Space Sci 44:65–70CrossRefGoogle Scholar
  2. Aeschliman R (1998) Topographic map of the Guinevere Planitia of Venus. V10M 30/240 RTK, USGSGoogle Scholar
  3. Archinal B, Becker T, Lee E, Edmundson K (2013) Initial global control network and mosaicking of ISS Images of titan. In: 44th lunar and planetary science conference, p 2957Google Scholar
  4. Archinal BA, Lee EM, Kirk RL, Duxbury TC, Sucharski RM, Cook DA, Barrett JM (2004) A new mars digital image model (MDIM 2.1) control network. ISPRS Working Group IV/p WorkshopGoogle Scholar
  5. Archinal BA et al (2010) Report of the IAU working group on cartographic coordinates and rotational elements: 2009. Celest Mech Dyn Astr. Scholar
  6. Archinal BA, A’Hearn MF, Bowell E, Conrad A, Consolmagno GJ, Courtin R, Fukushima T, Hestroffer D, Hilton JL, Krasinsky GA, Neumann G, Oberst J, Seidelmann PK, Stooke P, Tholen DJ, Thomas PC, Williams IP (2011) Report of the IAU/IAG working group on cartographic coordinates and rotational elements of the planets and satellites: 2009. Celest Mech Dyn Astr 109(2):101–135Google Scholar
  7. Batson RM (1990) Map formats and projections used in planetary cartography. In: Greeley R, Barson RM (eds) Planetary mapping. Cambridge University Press, CambridgeGoogle Scholar
  8. Batson RM (1973) Cartographic products from the mariner 9 mission. J Geophys Res 78(20):4424–4435CrossRefGoogle Scholar
  9. Becker TL, Geissler PE (2005) Galileo global color mosaics of Io. In: Lunar and planetary institute science conference abstracts, vol 36.
  10. Becker TL, Archinal B, Colvin TR, Davies ME, Gitlin A, Kirk RL, Weller L (2001) Final digital global maps of Ganymede, Europa, and Callisto, in Lunar and Planetary Science Conference XXXII: Houston, Lunar and Planetary Institute, abs. no. 2009Google Scholar
  11. Becker TL et al (2016) Completed global control network and Basemap of Enceladus. In: Lunar and Planetary Science Conference XLVII, Abs. #2342.
  12. Belton MJS, Klaasen KP, Clary MC, Anderson JL, Anger CD, Carr MH, Chapman CR, Davies ME, Greeley R, Anderson D (1992) The Galileo solid-state imaging experiment. Space Sci Rev 60.
  13. Bills BG (2005) Variations in the rotation rate of Venus due to orbital eccentricity modulation of solar tidal torques. J Geophys Res 110, E11007.
  14. Burba GA (1996) Cartographic aspects of Venus global geologic mapping at 1:10,000,000 scale. Vernadskiy-Brown Micro 24 abstracts 11Google Scholar
  15. Burmeister S, Willner K, Schmidt V, Oberst J (2018) Determination of Phobos’ rotational parameters by an inertial frame bundle block adjustment. J Geodesy 1–11. Scholar
  16. Cheng AF et al (2008) Long-range reconnaissance imager on new horizons. Space Sci Rev 140:189–215CrossRefGoogle Scholar
  17. Christensen PR et al (2001) Mars global surveyor thermal emission spectrometer experiment: investigation description and surface science results. J Geophys Res 106:23823–23872CrossRefGoogle Scholar
  18. Costa M (2017) SPICE for ESA planetary missions. EPSC Abstracts, vol 11, EPSC2017-654-1Google Scholar
  19. Dermott SF, Thomas PC (1987) The shape and internal structure of mimas. Icarus 73:25–65CrossRefGoogle Scholar
  20. Duxbury TC, Kirk RL, Archinal BA, Neumann GA (2002) Mars geodesy/cartography working group recommendations on mars cartographic constants and coordinate systems. ISPRS, vol 34, part 4, “Geospatial Theory, Processing and Applications,” OttawaGoogle Scholar
  21. Edwards CS, Nowicki, KJ, Christensen, PR, Hill, J, Gorelick, N, Murray, K (2011) Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. J Geophys Res 116:E10008.
  22. Elachi C et al (2005) Cassini radar views the surface of Titan. Science 308:970–974CrossRefGoogle Scholar
  23. Eliason E, Isbell C, Lee E, Becker T, Gaddis L, McEwen A, Robinson, M (1999) Mission to the Moon: the clementine UVVIS global lunar mosaic, PDS Volumes USA_NASA_PDS_CL_4001 through 4078, produced by the U.S. Geological Survey and distributed on CD media by the Planetary Data SystemGoogle Scholar
  24. Fergason RL, Lee EM, Weller L (2013) THEMIS geodetically controlled Mosaics of Mars, 44th Lunar and Planetary Science Conference, The Woodlands, TX, Abstract #1642Google Scholar
  25. Ford PG (1992) MGN V RDRS 5 global data record reflectivity V1.0, MGN-V-RDRS-5-GDR-REFLECTIVITY-V1.0, NASA planetary data system from cassini-ISS images. Planet Space Sci 57:83–92Google Scholar
  26. Gaddis L, Barrett J, Laura J, Milazzo M (2015) USGS ISIS tools supporting lunar selene “Kaguya” data from terrain camera, multiband imager and spectral profiler instruments. In: Second Planetary Data Workshop, 7040Google Scholar
  27. Gaddis LR, Sucharski, T, Becker, T, Gitlin, A (2001) Cartographic processing of digital lunar orbiter data, LPS XXXII, abs. #1892.
  28. Gwinner K, Jaumann R, Hauber E, Hoffmann H, Heipke C, Oberst J, Neukum G, Ansan V, Bostelmann J, Dumke A, Elgner S, Erkeling G, Fueten F, Hiesinger H, Hoekzema NM, Kersten E, Loizeau D, Matz KD, McGuire PC, Mertens V, Michael G, Pasewaldt A, Pinet P, Preusker F, Reiss D, Roatsch T, Schmidt R, Scholten F, Spiegel M, Stesky R, Tirsch D, van Gasselt S, Walter S, Wählisch M, Willner K (2016) The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites. Planet Space Sci 126:93–138. Scholar
  29. Gwinner K, Scholten F, Preusker F, Elgner S, Roatsch T, Spiegel M, Schmidt R, Oberst J, Jaumann R, Heipke C (2010) Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance. Earth Planet Sci Lett 294:506–519. Scholar
  30. Gwinner K, Scholten F, Spiegel M, Schmidt R, Giese B, Oberst J, Heipke C, Jaumann R, Neukum G (2009) Derivation and validation of high-resolution digital terrain models from Mars Express HRSC-Data. PE&RS 75:1127–1142Google Scholar
  31. Hare TM, Archinal BA, Becker TL, Lee EM, Gaddis LR, Redding BL, Rosiek MR (2008) Clementine mosaics warped to ULCN 2005 network, LPSC XXXIX, abstract#2337Google Scholar
  32. Hare TM et al (2013) Map projection web service for PDS images. LPSC XLIV, abstract 2068Google Scholar
  33. Haruyama J, Matsunaga T, Ohtake M, Morota T, Honda C, Yokota Y, Torii M, Ogawa Y (2008) Global lunar-surface mapping experiment using the Lunar Imager/Spectrometer on SELENE. Earth Planets Space 60:243–255CrossRefGoogle Scholar
  34. Hawkins SE III et al (2007) The mercury dual imaging system on the MESSENGER spacecraft. Space Sci Rev 131:247–338. Scholar
  35. IAU (1971) Commission 16: physical study of planets and satellites. In: Proceedings of the 14th General Assembly, Brighton 1970. Trans Int Astron Union 14B:128–137Google Scholar
  36. Isbell C, Gaddis L, Garcia P, Hare T, Bailen M (2014) Kaguya terrain camera mosaics. In: 45th lunar and planetary science conference 2268Google Scholar
  37. Jacobson RA, Konopliv AS, Park RS, Folkner WM (2018) The rotational elements of Mars and its satellites. Planet Space Sci 152:107–115. Scholar
  38. Jacobson RA, Lainey V (2014) Martian satellite orbits and ephemerides. Planet Space Sci 102:35–44. Scholar
  39. Jaumann R, Neukum G, Behnke T, Duxbury TC, Eichentopf K, Flohrer J, Gasselt SV, Giese B, Gwinner K, Hauber E, Hoffmann H, Hoffmeister A, Köhler U, Matz K-D, McCord TB, Mertens V, Oberst J, Pischel R, Reiss D, Ress E, Roatsch T, Saiger P, Scholten F, Schwarz G, Stephan K, Wählisch M (2007) The high-resolution stereo camera (HRSC) experiment on Mars Express: instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planet Space Sci 55:928–952CrossRefGoogle Scholar
  40. Kim JR, Muller J-P (2008) Very high resolution stereo DTM extraction and its application to surace roughness estimation over Martian surface. Int Arch Photogram Remote Sens Spatial Inf Sci. XXXVII(B4):993–998Google Scholar
  41. Kirk RL, Howington-Kraus E, Redding B, Galuszka D, Hare TM, Archinal BA, Soderblom LA, Barrett JM (2003) High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images. J Geophys Res 108(E12):8088. Scholar
  42. Laura JR, Hare TM, Gaddis LR, Fergason RL, Skinner JA, Hagerty JJ, Archinal BA (2017) Towards a planetary spatial data infrastructure. ISPRS Int J Geo-Inf 6:181CrossRefGoogle Scholar
  43. Lee EM, Gaddis LR, Weller L, Richie JO, Becker T, Shinaman J, Rosiek MR, Archinal BA, USG (2009) A new clementine basemap of the Moon. In: Lunar and planetary science conference XL, Houston, TX.
  44. Li C, Ren X et al (2010) Laser altimetry data of Chang’E-1 and the global lunar DEM model. Sci China Earth Sci 53(11):1582–1593CrossRefGoogle Scholar
  45. Melosh JH (2011) Planetary surface processes. Cambridge University Press, New YorkCrossRefGoogle Scholar
  46. Michael GG, Walter SHG, Kneissl T, Zuschneid W, Gross C, McGuire PC, Dumke A, Schreiner B, van Gasselt S, Gwinner K, Jaumann R (2016) Systematic processing of Mars Express HRSC panchromatic and colour image mosaics: image equalisation using an external brightness reference. Planet Space Sci 121:18–26. Scholar
  47. Moore JM et al (2016) The geology of Pluto and Charon through the eyes of New Horizons. Science 351(6279):1284–1293. Scholar
  48. Moratto ZM, Broxton MJ, Beyer RA, Lundy M, Husmann K (2010) Ames stereo pipeline, NASA’s open source automated stereogrammetry software. In: LPSC, vol 41, p 2364Google Scholar
  49. NAIF (2017) An overview of reference frames and coordinate systems in the SPICE context. Navigation and Ancillary Information Facility.
  50. Oberst J, Elgner S, Turner FS, Perry ME, Gaskell RW, Zuber MT, Robinson MS, Solomon SC (2011) Radius and limb topography of Mercury obtained from images acquired during the MESSENGER flybys. Planet Space Sci 59:1918–1924. Scholar
  51. Ohtake M, Pieters CM, Isaacson P, Besse S, Yokota Y, Matsunaga T, Boardman J, Yamomoto S, Haruyama J, Staid M, Mall U, Green RO (2013) One Moon, many measurements 3: spectral reflectance. Icarus 226(1):364–374CrossRefGoogle Scholar
  52. PDS (2008) PDS standards reference, chapter 2. Cartographic standards. Draft: v. 4.3, 12.10.08.
  53. Perry ME et al (2011) Measurement of the radius of Mercury by radio occultation during the MESSENGER flybys. Planet Space Sci. Scholar
  54. Pettengill GH, Eliason E, Ford PG, Loriot GB, Masursky H, McGill GE (1980) Pioneer venus radar results: altimetry and surface properties. J Geophys Res 85(A13):8261–8270CrossRefGoogle Scholar
  55. Preusker F et al (2017) The global meter-level shape model of comet 67P/Churyumov-Gerasimenko. Astron Astrophys 607. Scholar
  56. Rizvanov NG, Nefed’ev YA, Kibardina, MI (2007) Research on selenodesy and dynamics of the Moon in Kazan. Solar Syst Res 41(2):140–149Google Scholar
  57. Roatsch T, Wählisch M, Hoffmeister A, Kersten E, Matz K-D, Scholten F, Wagner R, Denk T, Neukum F, Helfenstein P, Porco C (2009) High-resolution Atlases of Mimas, Tethys, and iapetus derived from Cassini-ISS images. Planet Space Sci 57(1):83–92CrossRefGoogle Scholar
  58. Roatsch T, Wählisch M, Scholten F, Hoffmeister A, Neukum F, Porco C (2006) Mapping of the icy saturnian satellites. ISPRS XXXVI Commission IV, WG IV/7Google Scholar
  59. Roatsch T, Kersten E, Wählisch M, Hoffmeister A, Matz K-D, Scholten F, Wagner R, Denk T, Neukum G, Porco CC (2012) High-resolution atlas of Rhea derived from Cassini-ISS images. Planet Space Sci 61(1):135–141CrossRefGoogle Scholar
  60. Russell CT, Raymond CA (2011) The dawn mission to vesta and ceres. Space Sci Rev 163(1–4):3–23. Scholar
  61. Sato H, Robinson MS, Hapke B, Denevi BW, Boyd AK (2014) Resolved Hapke parameter maps of the Moon. J Geophys Res: Planets 119:1775–1805. Scholar
  62. Saunders RS, Pettengill GH, Arvidson RE, Sjogren WL, Johnson WTK, Pieri L (1990) The magellan venus radar mapping mission. J Geophys Res 95(B6):8339–8355. Scholar
  63. Schenk PM (2008) Cartographic and topographic mapping of the icy satellites of the outer solar system. ISPRS XXXVII Commission IV, WG IV/7Google Scholar
  64. Scholten F, Gwinner K, Roatsch T et al (2005) Mars Express HRSC data processing – methods and operational aspects. Photogram Eng Remote Sens 71(10):1143–1152CrossRefGoogle Scholar
  65. Seidelmann PK, Abalakin VK, Bursa M, Davies ME, De Bergh C, Lieske JH, Oberst J, Simon JL, Standish EM, Stooke P, Thomas PC (2002) Report of the IAU/IAG working group on cartographic coordinates and rotational elements of the planets, and satellites: 2000. Celest Mech Dyn Astr 82:83–110CrossRefGoogle Scholar
  66. Shan J, Yoon J, Lee DS, Kirk RL, Neumann GA, Acton CH (2005) Photogrammetric analysis of the mars global surveyor mapping data. Photogram Eng Remote Sens 71:97–108CrossRefGoogle Scholar
  67. Shevchenko V, Rodionova Z, Michael G (2016) Lunar and planetary cartography in Russia. Springer, Heidelberg. Scholar
  68. Sidiropoulos P, Muller J-P (2015) On the status of orbital high-resolution repeat imaging of Mars for the observation of dynamic surface processes. Planet Space Sci 117:207–222CrossRefGoogle Scholar
  69. Sidiropoulos P, Muller J-P (2018) A systematic solution to multi-instrument co-registration of high-resolution planetary images to an orthorectified baseline. IEEE Trans Geosci Remote Sens 56(1):78–92CrossRefGoogle Scholar
  70. Simonelli DP, Thomas PC, Carcich BT, Veverka J (1993) The generation and use of numerical shape models for irregular solar system objects. Icarus 103:49–61CrossRefGoogle Scholar
  71. Smith DE et al (2010) The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission. Space Sci Rev. Scholar
  72. Smith DE, Zuber MT, Solomon SC, Phillips RJ, Head JW, Garvin JB, Banerdt WB, Muhleman DO, Pettengill GH, Neumann GA, Lemoine FG, Abshire JB, Aharonson O, Brown CD, Hauck SA, Ivanov AB, McGovern PJ, Zwally HJ, Duxbury TC (1999) The global topography of Mars and implications for surface evolution. Science 284:1495–1503CrossRefGoogle Scholar
  73. Speyerer EJ, Robinson MS, Denevi BW, The LROC Science Team (2011) Lunar reconnaissance orbiter camera global morphological map of the Moon. In: Lunar planetary science conference, abstract #2387.
  74. Snyder JP (1987) Map projections–a working manual, U.S. Government Printing Office, U.S. Geological Survey professional paper, no 1395, vol 1395Google Scholar
  75. Stark A, Willner K, Burmeister S, Oberst J (2017) Geodetic framework for martian satellite exploration i: reference rotation models. In: European Planetary Science Congress 11Google Scholar
  76. Stephan K et al (2009) Mapping products of Titan’s surface. In: Brown RH, Dougherty M (eds) Titan From Cassini-Huygens. Springer, New York, pp 489–510CrossRefGoogle Scholar
  77. Stooke P (2012) Stooke small bodies maps V2.0. MULTI-SA-MULTI-6-STOOKEMAPS-V2.0. NASA Planetary Data SystemGoogle Scholar
  78. Thomas P (1987) Limb topography of Uranian satellites. LPSC XVIII 1010-1011Google Scholar
  79. USGS (2002) Controlled photomosaic map of Europa, Je 15M CMN: U.S. Geological Survey Geologic Investigations Series I–2757.
  80. USGS (2004) Production of digital image models with ISIS. ISIS 2 documentation.
  81. USGS (2013) Stereo processing of planetary stereo imagery using ISIS3 and SOCET SET® a primer. Astrogeology Science Center, USGSGoogle Scholar
  82. USGS (2017a) Mimas Voyager Image Control Network (RAND)Google Scholar
  83. Wagner RV, Speyerer EJ, Robinson MS, LROC Team (2015) New mosaicked data products from the LROC team. In: 46th lunar and planetary science conference, abstract #1473. Eposter:
  84. Wang J, Scholes D, Zhou F, Bennette K (2017) COORDINATE SYSTEM? In: Planetary data system (PDS) geosciences node orbital data explorer version 3.0 user’s manual.
  85. White OL, Schenk PM, Nimmo F, Hoogenboom T (2014) A new stereo topographic map of Io: Implications for geology from global to local scales. J Geophys Res Planets 119:1276–1301. Scholar
  86. Willner K, Oberst J, Hussmann H, Giese B, Hoffmann H, Matz K-D, Roatsch T, Duxbury T (2010) Phobos control point network, rotation, and shape. Earth Planet Sci Lett 294:541–546. Scholar
  87. Willner K, Oberst J, Wählisch M, Matz K, Hoffmann H, Roatsch T, Jaumann R, Mertens V (2008) New astrometric observations of Phobos with the SRC on Mars Express. Astron Astrophys 488:361–364CrossRefGoogle Scholar
  88. Willner K, Shi X, Oberst J (2014) Phobos’ shape and topography models. Planet Space Sci (PSS) 102:51–59 CrossRefGoogle Scholar
  89. Wong EC, Lai JY (1980) Attitude determination of Galileo spacecraft from star data. In: Guidance and Control Conference, Danvers, MA, 11–13 August 1980. AIAA PAPER, pp 80–1732Google Scholar
  90. Zangari A (2015) A meta-analysis of coordinate systems and bibliography of their use on Pluto from Charon’s discovery to the present day. Icarus 246:93–145CrossRefGoogle Scholar
  91. Zuber M, Smith DE (1996) Topographic mapping of the Moon. Int Arch Photogram Remote Sens 31(B4):1011–1015Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Eotvos Loránd UniversityBudapestHungary
  2. 2.German Aerospace Center (DLR), Institute of Planetary ResearchBerlinGermany
  3. 3.Astrogeology, United States Geologic SurveyFlagstaffUSA

Personalised recommendations