Advertisement

On the Descriptive Complexity of \(\overline{\varSigma ^*\overline{L}}\)

  • Michal Hospodár
  • Galina Jirásková
  • Peter Mlynárčik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10396)

Abstract

We examine the descriptive complexity of the combined unary operation \(\overline{\varSigma ^*\overline{L}}\) and investigate the trade-offs between various models of finite automata. We consider complete and partial deterministic finite automata, nondeterministic finite automata with single or multiple initial states, alternating, and boolean finite automata. We assume that the argument and the result of this operation are accepted by automata belonging to one of these six models. We investigate all possible trade-offs and provide a tight upper bound for 32 of 36 of them. The most interesting result is the trade-off from nondeterministic to deterministic automata given by the Dedekind number \({{\mathrm{M}}}(n-1)\). We also prove that the nondeterministic state complexity of \(\overline{\varSigma ^*\overline{L}}\) is \(2^{n-1}\) which solves an open problem stated by Birget [1996, The state complexity of \(\overline{\varSigma ^*\overline{L}}\) and its connection with temporal logic, Inform. Process. Lett. 58, 185–188].

References

  1. 1.
    Birget, J.: Intersection and union of regular languages and state complexity. Inform. Process. Lett. 43(4), 185–190 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Birget, J.: The state complexity of \(\overline{{\Sigma }^* \overline{L}}\) and its connection with temporal logic. Inform. Process. Lett. 58(4), 185–188 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brzozowski, J., Jirásková, G., Liu, B., Rajasekaran, A., Szykuła, M.: On the state complexity of the shuffle of regular languages. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 73–86. Springer, Cham (2016). doi: 10.1007/978-3-319-41114-9_6 CrossRefGoogle Scholar
  4. 4.
    Brzozowski, J.A., Leiss, E.L.: On equations for regular languages, finite automata, and sequential networks. Theoret. Comput. Sci. 10, 19–35 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cohen, J., Perrin, D., Pin, J.: On the expressive power of temporal logic. J. Comput. Syst. Sci. 46(3), 271–294 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fellah, A., Jürgensen, H., Yu, S.: Constructions for alternating finite automata. Int. J. Comput. Math. 35(1–4), 117–132 (1990)CrossRefzbMATHGoogle Scholar
  7. 7.
    Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity. CoRR abs/1509.03254 (2015). http://arxiv.org/abs/1509.03254
  8. 8.
    Jirásková, G.: State complexity of some operations on binary regular languages. Theoret. Comput. Sci. 330(2), 287–298 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jirásková, G.: Descriptional complexity of operations on alternating and boolean automata. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR 2012. LNCS, vol. 7353, pp. 196–204. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30642-6_19 CrossRefGoogle Scholar
  10. 10.
    Jirásková, G., Pighizzini, G.: Optimal simulation of self-verifying automata by deterministic automata. Inform. Comput. 209(3), 528–535 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kapoutsis, C.: Removing bidirectionality from nondeterministic finite automata. In: Jȩdrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 544–555. Springer, Heidelberg (2005). doi: 10.1007/11549345_47 CrossRefGoogle Scholar
  12. 12.
    Kleitman, D., Markowsky, G.: On Dedekind’s problem: the number of isotone boolean functions. II. Trans. Amer. Math. Soc. 213, 373–390 (1975)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Leiss, E.L.: Succint representation of regular languages by boolean automata. Theoret. Comput. Sci. 13, 323–330 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lupanov, O.B.: A comparison of two types of finite automata. Problemy Kibernetiki 9, 321–326 (1963). (in Russian) German translation: Über den Vergleich zweier Typen endlicher Quellen. Probleme der Kybernetik 6, 328–335 (1966)Google Scholar
  15. 15.
    Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math. Doklady 11, 1373–1375 (1970)zbMATHGoogle Scholar
  16. 16.
    Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: Proceedings of the \(12\)th Annual Symposium on Switching and Automata Theory, pp. 188–191. IEEE Computer Society Press (1971)Google Scholar
  17. 17.
    Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput. C-20, 1211–1219 (1971)Google Scholar
  18. 18.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Develop. 3, 114–125 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sipser, M.: Introduction to the Theory of Computation. Cengage Learning (2012)Google Scholar
  20. 20.
    Yershov, Yu.L.: On a conjecture of V. A. Uspenskii. Algebra i Logika (Seminar) 1, 45–48 (1962). (in Russian)Google Scholar
  21. 21.
    Yu, S.: Chapter 2: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. I, pp. 41–110. Springer, Heidelberg (1997)Google Scholar
  22. 22.
    Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michal Hospodár
    • 1
  • Galina Jirásková
    • 1
  • Peter Mlynárčik
    • 1
  1. 1.Mathematical InstituteSlovak Academy of SciencesKošiceSlovakia

Personalised recommendations